Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Joannis Yannas

Macroscopic forces generated by cell-matrix interactions

- I. Cells generate forces after becoming attached to a matrix.
- **II.** How do cells attach to a matrix?
- III. Cell-matrix interactions control the spontaneous closure of wounds in organs.
- IV. What happens when wound closure occurs by induced regeneration?

I. Cells generate forces after becoming attached to a matrix.

- Cells develop contractile forces individually, not cooperatively.
- Cell elongation, not contraction, occurs first, and eventually leads to matrix deformation.
- Contractile forces are force-limited, not displacement-limited.

A brief review or relevant structures: cell membrane, transmembrane proteins, cell receptors (integrins), cytoplasm, matrix

Definition of unit cell process

Figure by MIT OCW.

A typified cell diagram showing cell-cell binding

Figure removed for copyright reasons.

From Burkitt et al.

Figures by MIT OCW. After Burkitt et al. (upper) and Darnell (lower).

Specific cell-matrix interaction through integrins

Figure by MIT OCW. After Hynes, 1990

A biologically active ECM analog

Photo removed for copyright reasons.

From Yannas, 2004

FIRST ARTICLE

See Freyman, T.M., I.V. Yannas, R. Yokoo, and L.J. Gibson. "Fibroblast contraction of a collagen-GAG matrix." *Biomaterials* 22 (2001) 2883-2891. Represent force-time data by a single residual exponential:

 $F(t) = F_{\infty}[1 - exp(t/\tau)]$

Asymptotic data (and all isochronous data) represented by linear relation:

$$F(t) = dk = df_c$$

- d = cell density, no./cm³
- f_c = force per cell

Conclusions on Linearity vs. Cooperativity of Fibroblast Contraction of Matrix

- The contractile force increases linearly with cell density.
- The average contractile force is calculated at 1 nN per cell.
- The kinetics for development of force are also independent of cell density.
- In this model cells must develop contractile forces individually, not cooperatively.

SECOND ARTICLE

See Freyman, T.M., I.V. Yannas, Y-S. Pek, R. Yokoo, and L.J. Gibson. "Micromechanics of Fibroblast Contraction of a Collagen-GAG Matrix." *Experimental Cell Research* 269 (2001) 140-153.

Conclusions on Micromechanics of Fibroblast Contraction

- The aspect ratio of cells increases with time and eventually saturates, just as the force does.
- Initiation of cell elongation occurs stochastically.
- The force plateau most simply results from buckling or bending of individual struts in the matrix by cells.
- Matrix deformation (contraction) occurs following cell elongation, not following cell contraction.

THIRD ARTICLE

See Freyman, T.M., I.V. Yannas, R. Yokoo, and L.J. Gibson.

"Fibroblast Contractile Force Is Independent of the Stiffness Which Resists the Contraction." *Experimental Cell Research* 272 (2002) 153-162.

Conclusions on the Effect of Matrix Stiffness on Cell Contraction

- The contractile force generated by fibroblasts was independent of matrix stiffness in the range 0.7 – 10.7 N/m.
- Contractile forces generated by cells are forcelimited, not displacement-limited.
- As cells elongate, cell-matrix adhesion sites hypothetically form at the cell periphery, increasing length of matrix strut under compressive load and decreasing load required to buckle the strut.