Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Myron Spector

Massachusetts Institute of Technology Harvard Medical School Brigham and Women's Hospital VA Boston Healthcare System

LIGAMENTS AND TENDONS

M. Spector, Ph.D.

CELL-MATRIX MECHANICS

- Effects of mechanical forces on cells (including the response to removing forces)
 - -Load-deformation behavior of the tissue
 - Histological make-up of the tissue to derive structure-properties relationships
- Endogenous force generated by cells

TOPICS

- Microanatomy/Histology
- Molecular composition of the ECM

-Hierarchical structure

- Mechanical properties
- Response to injury and healing potential
- Response to mechanical loading

JOINT TISSUES

Structure - Function Relationships

ECM Architecture - Mechanical Function

INTRAARTICULAR VERSUS EXTRAARTICULAR LIGAMENTS

- What are the unique characteristics of the joint environment?
- Why don't these tissues heal?

INTRAARTICULAR ENVIRONMENT

Synovial fluid

Dissolves the fibrin clot

Absence of surrounding vascularized tissue

COMARISON OF JOINT TISSUES

		Tissue	Cell	Round/	/			
	Loading	Туре	Туре	Lac.	Coll.	PG	Vasc.	Heal.
Art. Cart.	Comp.	Hyal. Cart.	Chond.	Yes	11	┾┾┽	0	0
Meniscus	C/T		Fibro- Chond.		I	0/+	0*	0
ACL	Tens.	Fibrous Tissue		No	I	0	0**	0

* Inner third
** Mid-substance

Ligament: Histology

Diagram removed for copyright reasons.

Ligament: Polarized Light Microscopy

Diagram removed for copyright reasons.

Ligament: ECM Hierarchical Architecture

Diagram removed for copyright reasons.

Rat tail tendon viewed under polarized light microscopy while undergoing tensile testing

Graphs and photos removed for copyright reasons.

Healing

Healing through the production and remodeling of scar
 Origin of reparative fibroblasts intrinsic or extrinsic?

Stages

Inflammation Matrix and Cellular Proliferation Remodeling Maturation AA

AAOS: Injury and Repair of Musculoskeletal Tissues, 1988

Stress and Motion Dependent Changes

Stress Deprivation (Immobilization)
Recover (Remobilization)
Stress Increases (Exercise)

Stress Deprivation (Immobilization): Biochemical Changes

- Water content
- ★ Total GAG
- Collagen mass
- Collagen turnover (degradation and synthesis)
 - Collagen cross-linking

Stress Deprivation (Immobilization): Biomechanical Changes

↑ Joint stiffness

Structural properties of the ligament-bone complex

 Mechanical properties of the ligament substance

LIGAMENT AND TENDON

Cell Response to Loading Meikle; Newborn rabbit cranial sutures (ligament)

Continous stress

Collagen synthesis
 Degradative enzymes
 Enzyme inhibitors

Slack; In vitro (tendon cells) Cyclic tensile loading ——

↑ Protein ↑ GAGs

α-smooth muscle actin in fibroblasts in the healing rabbit collateral ligament

Diagram and photo removed for copyright reasons.

Faryniarz, Chaponnier, Gabbiani, Yannas, and Spector; *JOR*, 14:228 (1996)

10% cells SiviA-

Myofibroblasts in the Healing Rabbit Medial Collateral Ligament (10 wks post-rupture)

Faryniarz, Chaponnier, Gabbiani, Yannas, and Spector; JOR, 14:228 (1996)

Photos removed for copyright reasons.

Myofibroblasts draw the ruptured ends together and tension the ligament.

SMA-containing cells in the intact human ACL

Diagram and photos removed for copyright reasons.

MM Murray, *et al.*, *JOR*, 1999;17:18-27

Histologic Changes in the Human ACL after Rupture

Diagram removed for copyright reasons.

A. Inflammation

B. Epiligamentous Regeneration

C. Proliferation

D. Remodeling

M. Meaney Murray, et al., J. Bone Jt. Surg., 2000;82-A:1387

Ruptured Human Anterior Cruciate Ligaments

- Blood Vessel

Photo removed for copyright reasons.

Evidence supporting the hypothesis that SMA-enabled contraction is responsible for retraction of the ruptured ends.

Crimped morphology of SMA-containing (red) cells consistent with contraction. Imparting crimp to matrix?

Photo removed for copyright reasons.

M. Meaney Murray, et al. J. Bone Jt. Surg., 2000;82-A:1387 The Migration of Human Anterior Cruciate Ligament Fibroblasts into Porous Collagen-GAG Matrices In Vitro

> M. M. Murray, D. Schultz-Torres, S. D. Martin, and M. Spector

Department of Orthopaedic Surgery Brigham and Women's Hospital Harvard Medical School Boston, MA Graphs and diagrams removed for copyright reasons.

See results published in these two papers:

- 1) Meaney Murray M, Martin SD, and Spector M. The migration of cells from human anterior cruciate ligament explants into collagen-glycosaminoglycan scaffolds. *J. Orthop. Res.* 2000;18:557-564.
- 2) Murray MM and Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagenglycosaminoglycan regeneration templates in vitro. *Biomat*. 2001;22:2393-2402.

Results: 2-D Culture

Outgrowth start time ◆ 10 ± 0.5 days for explants from intact ACLs \bullet 8 \pm 2 days for explants from ruptured ACLs Rates of outgrowth ♦ 0.23 mm/day for explants from intact ACLs ♦ 0.25 mm/day for explants from ruptured ACLS

Results: 3-D Culture

- Maximum cell number density in scaffold at 2 weeks
- ◆ 462 ± 169 cells/mm² for explants from intact
 ◆ 333 ± 161 cells/mm² for explants from ruptured
 Maximum cell number density in scaffold at 4 weeks
 - ♦ 652 ± 330 cells/mm² for explants from intact

Tendon Hierarchy

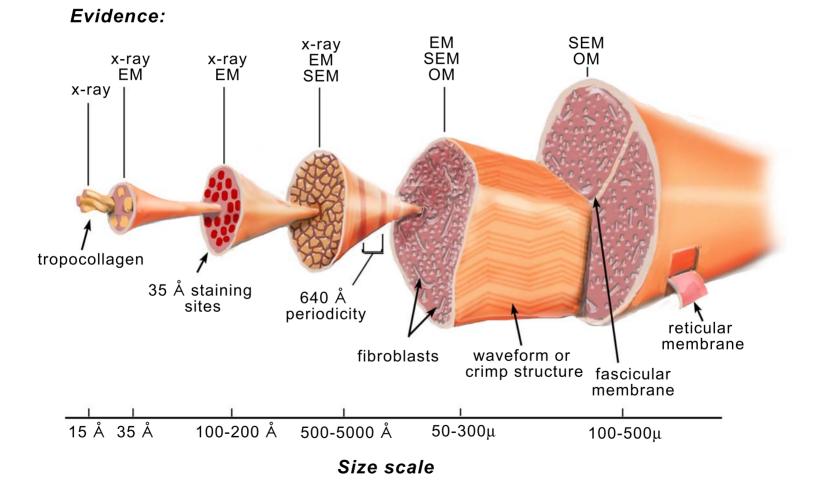


Figure by MIT OCW. After Fung.

TENDON

Healing

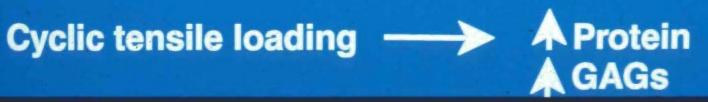
– Contribution of cells intrinsic and extrinsic to the tendon?

 Cell from peritendinous, epitendinous, and endotendinous tissues infiltrate the wound

Collagen synthesis evident after 7–8 days

Fibroblasts predominate after 14 days

TENDON


Cell Response to Loading

leikle; Newborn rabbit cranial sutures

Continous stress

Collagen synthesis Degradative enzyme:
 Enzyme inhibitors

lack; In vitro

Ruptured Human Rotator Cuff

Photos removed for copyright reasons.

Is SMA-enabled contraction responsible for retraction of the ruptured ends?

J. Premdas, *et al.* JOR, 2001;19:221-228

TENDON AND LIGAMENT

Limitations to Healing

- Absence of a fibrin clot
 - -Absent or low vascularity
 - -Dissolution of clot in synovial fluid (ACL)
- Cell migration restricted by matrix
- Low cell density
- Low mitotic activity
- Mechanical loading disrupts stroma

Stress Deprivation (Immobilization): Biochemical Changes

Water content

Total GAG

Collagen mass

Collagen turnover (degradation and

synthesis)

Collagen cross-linking