Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Myron Spector Prof. Ioannis Yannas

Measuring Cell Contraction Cell Force Monitor

Brendan Harley

2.785J/3.97J/BEH.411J/HST.523J Massachusetts Institute of Technology March 11, 2004

Courtesy of Brendan Harley. Used with permission.

Clinical Application

- Wound healing following severe injury: *Repair*
 - Wound contraction
 - Myofibroblasts (α-SMA)
 - Synthesis of scar tissue
 - Anisotropic tissue
 - Significantly stiffer, reduced range of motion, pain, inferior functional properties
- Bioactive scaffolds developed to induce regeneration
 - Cell continuity is practically absent
 - Contractile cells are randomly oriented within the bioactive scaffold
 - Hypothesis: the structure of the bioactive ECM analog prevents the coordinated cell contraction that results in wound contraction and scar formation

Yannas, 2001

Development of Bioactive Scaffolds

- Bioactive scaffolds engineered to induce an appropriate or desired cell response *in vitro* or *in vivo*
- Requires critical adjustment of four physical and structural properties :
 - 1. Chemical composition (ligands)
 - 2. Average pore size
 - 3. Degradation rate
 - 4. For induced regeneration: Collagen fiber structure

Yannas, 2001

Bioactive Scaffold: Pore Size

- Scaffold bioactivity is significantly affected by pore structure
 - Large enough to allow cells to migrate into the structure
 - Small enough to establish a sufficiently high specific surface area
- Non-uniform scaffolds
 - Patches of scaffold are inactive
- Fabrication of a uniform scaffold
 - Uniform activity throughout scaffold
 - Study cell-scaffold interactions at a microscopic scale

Figure by MIT OCW. After Yannas et al., 1989.

Design of Cell/Tissue Specific Biomaterials

- Material and structural properties significantly affect cell behavior
 - Different cell types respond differently to different scaffolds
 - Architecture mediated?
 - Stiffness mediated?
 - Composition mediated?
 - Degradation rate mediated?

Nehrer et al., 1997 Yannas, 2001 Salem et al., 2002 Claase et al. 2003

- How do cells detect and respond to their surrounding environments (*i.e.*, mechanical, structural, chemical) and what are the critical cues?
 - Cell-mediated contraction

- Study behavior of a single cell on a flat membrane (*i.e.*, silicone, polyacrylamide)
 - Mechanical environment (*i.e.*, system stiffness)
 - Chemical environment (*i.e.*, ligands, growth factors, cytokines)

- Experimental tools:
 - Microscopic analysis of membrane deflection

- Study cell-generated forces on flexible membranes
 - Traction forces during migration
 - Measure deflection of membranes

Photos removed for copyright reasons.

Silicone membrane

Silicone membrane with a regular dot pattern

Polyacrylamide membrane with fluorescent microspheres Beningo and Wang, 2002

Diagrams and photo removed for copyright reasons.

Array of flexible PDMS posts

3T3 Fibroblast, Substrate Deformation:

Diagram showing states at t = 0 and t = 30 min removed for copyright reasons.

Three diagrams removed for copyright reasons.

Cell on membrane

Deformation vectors

Field of traction stresses

Pelham et al., 1999 Munevar et al., 2000 8

2/16/2005

B. Harley Measuring Cell Contraction March 11, 2004

Cell Mechano-Sensitivity

Polyacrylamide gel with two distinct regions of rigidity (14 vs. 20 kPa):

Series of 16 photos (t=0:00 to t=3:50) removed for copyright reasons.

Stronger traction forces on stiff substrate (1.1 vs. 0.6 Pa)

Faster migration on soft substrate (0.44 vs. 0.23 µm/min)

Cell deformation of an array of flexible posts:

Before and after treatment with 2,3-butanedione monoxime (inhibitor of myosin contractility)

Source: Figures 2 and 3 in Tan, John L. et al. "Cells lying on a bed of microneedles: An approach to isolate mechanical force." PNAS 100:4 (February 18, 2003) 1484-1489. Courtesy of the National Academy of Sciences. Used with permission. B. Harley Measuring Cell Contraction March 11, 2004

Single Cell Mechanics: Results Summary

- Cells can sense and respond to the surrounding mechanical environment
 - Substrate flexibility/rigidity regulates cell migration and applied traction forces
 - Substrate flexibility/rigidity regulates cell growth and apoptosis
 - Cells on more flexible (4.7 vs. 14 kPa) substrates show decreased rates of DNA synthesis and increased rates of apoptosis
- Kinetics of contractile force development (smooth muscle cell):

Graph removed for copyright reasons.

Lo et al., 2000 Wang et al., 2000 Tan et al., 2003

Cell Population Mechanics in 3-D Substrates

- Study behavior of a population of cells in a scaffold (*i.e.*, collagen-GAG scaffold)
 - Mechanical environment (*i.e.*, system stiffness)
 - Chemical environment (*i.e.*, ligands, growth factors, cytokines)
- Experimental tools:
 - Live cell imaging
 - Cell Force Monitor (CFM)

Collagen-GAG Scaffold Fabrication

Production of Collagen-GAG (CG) co-Polymer Suspension:

Fabrication of CG Scaffolds with Different Pore Sizes:

Collagen-GAG Pore Structure

Photo removed for copyright reasons.

Pek et al., 2003

Effect of T_f on Mean Pore Size

Significant effect (p<0.05) of T_f on mean pore size

Mechanical Model of Open-Cell Foams

- Open-cell tetrakaidecahedron
 - Packs to fill space
 - Approximates structural features of low-density foams

$$E^* = \left(\frac{\rho^*}{\rho_s}\right)^2 \cdot E_s$$

Strut bending dependence

B. Harley Measuring Cell Contraction March 11, 2004

CG Scaffold Mechanics: Results

Cellular Solids Model Prediction:

Experimental Results:

CG Scaffold Mechanics: Results

Non-hydrated Scaffold Mechanical Properties:

Modulus determined from linear fit of data between 0.05 and 0.12 strain

CG Scaffold Mechanics: Results

Non-hydrated Scaffold Modulus determined through Experiment:

T _f , °C	E _{non-hydrated} , kPa	E _{hydrated} , Pa
-10	36.2 ± 3.8	200
-20	28.0 ± 3.5	175
-30	28.1 ± 2.4	175
-40	30.3 ± 3.3	175

$$\rho^*/\rho_s = 0.006$$

Cellular Solids Model Predictions:

No dependence on mean pore size

Relative density = 0.006Non-hydrated Collagen modulus: $(E_s) \sim 1$ GPa

 $E \sim 36 kPa$

Agreement between cellular solids model estimated and experimentally measured mechanical properties

Live Cell Imaging

Freyman, 2001

Photos removed for copyright reasons.

Fibroblast Morphology in CG Scaffold

Photos removed for copyright reasons.

Freyman, 2001

Cell Aspect Ratio: $AR = \frac{l}{w}$

Fibroblast Aspect Ratio vs. Time in CG Scaffold

Fibroblast Aspect Ratio Frequency vs. Time

B. Harley Measuring Cell Contraction March 11, 2004

Cell Force Monitor (CFM)

Force Calculation

$$F = F_{beam} + F_{matrix} = V \cdot C_{force} + V \cdot C_{displ} \cdot K_{matrix}$$

- Parallel sum of forces
- Voltage, C_{force} , $C_{displ,}$, and K_{matrix}
- Correct for matrix only

Freyman, 2001

Cell Force Monitor: Interpretation of Data

• Fit data for each sample to: $F = F_a \cdot \left(1\right)$

$$-e^{-t/\tau}$$

• Each data set defined by N_c , F_a , and τ

After Freyman, 2001 27

Effect of Cell Number on Contractile Force

2/16/2005

B. Harley Measuring Cell Contraction March 11, 2004

After Freyman, 2001

Effect of Cell Number: Fitting Parameters

Number of Attached Cells, N _c [x 10 ⁶]	Time Constant, τ [hr.]	Asymptotic Force, F _a [mN]
2.3 ± 0.31	5.0 ± 1.3	3.7 ± 0.6
4.4 ± 0.21	4.0 ± 0.5	5.4 ± 1.4
6.0 ± 0.13	5.0 ± 0.4	8.1 ± 0.5
7.2 ± 0.05	7.0 ± 1.5	10.0 ± 1.9
10.0 ± 0.23	4.0 ± 0.5	12.0 ± 0.7

Asymptotic Force Generation vs. Cell Number

After Freyman, 2001 30

Asyptotic Force Generation vs. Cell Number, Time

Effect of System Stiffness on Contractile Force

Effect of System Stiffness: Fitting Parameters

	Total System Stiffness				
Curve Fit Parameters	10 N/m	1.4 N/m	0.7 N/m	Trend	
Mean Asymptotic Force per Cell, F _{cell} [nN]	3.2 ± 0.3	2.9 ± 0.2	2.7 ± 0.4	Const.	
Mean Asymptotic Displacement per Cell, d _{cell} [nm]	0.32 ± 0.03	2.0 ± 0.2	3.2 ± 0.6		
Mean Time Constant, τ [hr.]	7.9 ± 1.3	5.2 ± 0.85	5.1 ± 0.60	Const.	
Rate of Contraction per Cell [nm/(hr cell)]	0.04 ± 0.004	0.38 ± 0.04	0.63 ± 0.06		

Force Generation vs. System Stiffness

Cell Population Mechanics: Results Summary

• Cell-generated contractile forces – Defined by F_a , N_c , and τ

$$F = F_a \cdot (1 - e^{-t/\tau})$$
$$\Delta \propto (1 - e^{-t/\tau})$$

 $F_a = \sim 1 \text{ nN/cell}$ $\Delta = \text{Cell aspect ratio}$ $\tau = 5.2 \pm 0.5 \text{ hr}$

Fibroblast Model: Elongation and Contraction

CFM: Conclusions

- Force determined at level of individual cells (*i.e.*, not cooperatively)
 - Cell-generating contractile forces independent of cell density (1200 – 5100 cells/mm³)
- Contraction was limited by the force which developed; not displacement
- Force measured was that required to support cell elongation

CFM: Conclusions

- Cells elongate (spread) on scaffold struts prior to generating contractile forces
 - Time for contraction to develop independent of cell density and system stiffness
- Cell-generated contractile force independent of system stiffness

Conclusions

- Cell-mediated contraction
 - Single cells on 2-D membranes
 - Cell populations in 3-D scaffolds

- Cells are exquisite mechanotransducers

- Cells respond to mechanical environment
 - Migration, Traction force, Apoptosis, Cell growth (2-D)
 - Cell spreading, Migration, Contractile Force (3-D)

CFM Demonstration