Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Lorna Gibson, guest lecturer

Structure-Property Relationships for Tissue Engineering Scaffolds

Prof. Lorna Gibson

Courtesy of Prof. L. Gibson. Used with permission.

Wound Healing: Contractile Response

- Skin wounds: fibroblasts migrate into the wound bed, differentiate into myofibroblasts
- Myofibroblasts pull edges of wound towards each other
- Contractile response associated with formation of scar tissue

Wound Healing: Contractile Response

- Tissue engineering: inhibition of contractile response leads to regeneration of normal tissue
- Interest in understanding mechanical interactions between cells and tissue engineering scaffolds
- Can also use scaffold as a model, *in vitro* system for studying contractile response
- Need to understand the mechanical response of the scaffold

Extracellular Matrix

In body cells attach to extracellular matrix (ECM), migrate along it, multiply and function

Figure by MIT OCW. After G. B. Ricci.

Tissue Engineering Scaffolds/Matrix

- Porous scaffold or matrix mimics body's ECM
- Cells migrate into scaffold from surrounding tissue OR
- Cells harvested from patient, cultured, seeded onto scaffold
- Inhibition of contractile response
- Over time, synthetic matrix resorbs into the body and cells produce own **ECM**
- Applications: skin, cartilage, nerve, bone, liver

Example: Cartilage Regeneration

Diagram removed for copyright reasons.

sketch from Freed et al. (1993) *J. Biomed. Mat. Res.* **27, 11-23.**

Matrix Materials

• **Requirements**

Solid phase

- biocompatible
- composition: ligands for cell binding
- degrade into non-toxic components that can be eliminated from the body over time
- Examples:
	- poly L lactic acid (PLA)
	- polyglycolic acid (PGA)
	- poly DL lactic-co-glycolic acid (PLGA)
	- collagen-based materials

Cellular structure

- high porosity: >90%
- pore size: $100-200 \mu m$
- interconnected porosity
- critical degradation rate
- mechanical integrity

Matrix Materials

Photo removed for copyright reasons. See Figure 1b in Pek YS, Spector M, Yannas IV and Gibosn LJ Degradation of a collagen chondroitin-6-sulfate by collagenase and chondroitinase *Biomaterials* 25, 473-482 (2004).

Collagen-GAG - freeze dried

Photo removed for copyright reasons.

Photo removed for copyright reasons.

PGA - bonded fibres (Mikos et al, 1993)

(Kohn; from Lhommeau 8 Polycarbonate - salt leached et al, 1998)

Cellular Materials

Photos removed for copyright reasons. See Figure 2.5 in Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*.

Cellular Materials

Graph of Polyurethane Compression removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

Matrix Materials

- Structure and stress-strain curve of matrix similar to that of open-cell foam
- Open-cell foams are a type of cellular material
- Similarities in the mechanical behaviour of cellular solids due to similarities in their structure
- Models for the mechanics of cellular solids may be applied to tissue engineering scaffolds

2D Honeycomb Models for Cellular Materials

Figure by MIT OCW. After Gibson and Ashby.

- exact structural analysis:
- $E = f\{(t/1)^3, E_s, cell geometry\}$
- $\sigma^* = f\{(t/1)^2, \sigma_{ys}, \text{cell geometry}\}\$
- $\varepsilon_{\text{D}} = f \{ (t/1) \}$
- $\rho/\rho_s = f\{t/l\}$
- Engineering honeycombs, wood, cork

3D Foam Models

- Dimensional analysis:
	- model mechanisms of deformation and failure, but not exact cell geometry
- Unit cell analysis:
	- e.g. tetrakaidecahedra
	- analytically or numerically
- Voronoi (random) cells:
	- FE analysis
- μ CT representation of structure – FE analysis of a particular structure

Dimensional Analysis Open Cell Foam: E

Figure by MIT OCW. After Gibson and Ashby.

 $\sigma \propto F/l^2$ $\varepsilon \propto \delta/l$ $\delta \propto Fl^3$ / E_st^4 $\left(\rho/\rho_s\right) \propto \left(t/l\right)^2$ E^* / $E_{_S} \propto \left(t$ / $l\right)^4 = C \big(\! \rho / \, \rho_{_S} \big)^{\! 2}$

Data for E

Graph removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

Dimensional Analysis: Open Cell Foam: σ *

Graph removed for copyright reasons.

See Gibson, L.J. and M.F. Ashby. Cellular Solids: Structure and Properties. New York: Cambridge University Press, 1997.

σ $^* \propto P_{cr}$ / l^2

 $P_{cr} \propto E_{_S} t^4$ / l^2

σ * *Es* ∝ () *t* /*l* ⁴ ⁼ *^C* ^ρ / ^ρ*^s* () 2

Graph removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

Densification strain, $\varepsilon_{\rm D}$

Graph removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

Unit Cell Analysis: Tetrakaidecahedra

Diagram removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

 $E/E_s = 0.98 \left(\rho/\rho_s\right)^2$

Voronoi Cell Analysis

Diagram removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

$$
E/E_s = 0.8 \left(\rho/\rho_s\right)^2
$$

Summary of Results

$$
E/E_s = C(\rho/\rho_s)^2
$$

- Dim. anal: $C = ?$; data: $C \sim 1$
- Unit cell $C = 0.98$
- Voronoi $C = 0.80$

$$
\sigma'/E_s = C\left(\rho/\rho_s\right)^2
$$

- Dim. anal: $C = ?$; data: $C \sim 0.05$
- Unit cell $C = 0.2$
- Voronoi $C = ?$

$$
\varepsilon_{D} = 1 - 1.4(\rho/\rho_{s})
$$

Scaffold Properties

- Relative density = 0.005
- Collagen modulus ~ 1GPa
- E ~ E_s $({\rho}/{\rho_s})^2 = 25$ kPa
- $\sigma^* \sim 0.05 \text{ E}_s (\rho/\rho_s)^2 = 1.25 \text{ kPa}$
- $\varepsilon_{\rm D} \sim 1.1.4~(\rho/\rho_{\rm s}) = 0.99$

Scaffold Properties

For comparison: Cartilage E ~2 MPa Bone $E = 1-20$ GPa

Scaffold E and σ depend on:

- E_s of the solid
	- Composition
	- Cross-link density
- Relative density (volume fraction of solid)
	- Most sensitive to relative density
	- Note that *small* changes in porosity can be *large* changes in rel. density
	- Modulus, strength vary as ρ^2
- Cell geometry (through the constant of proportionality)
	- Fairly weak dependence

Scaffold E and σ∗ do not depend on:

- Pore size
	- Properties depend on relative density, which varies as $(t/1)^2$
	- Properties depend on ratio of t/l but not on absolute size of t, l

Tensile Modulus

- "Skin" surface layer about 10 µm thick, almost solid collagen, $E_{skin} \sim 1$ GPa
- Scaffold about 3mm thick, $E_{scaffold} \sim 30$ kPa

Tensile Modulus

Composites upper bound:

$E_{tension} = E_{skin}V_{skin} + E_{scaffold}V_{scaffold}$ $= (1000) (10) + (0.030)(3000)$ 3010 $= 3.35 \text{ MPa} = 3350 \text{ kPa}$

Tensile modulus is about 100 times compressive modulus, due to skin

Refinements to Models

- Closed cells: Membrane effect
	- Face stretching: stiffness varies as (t/l)
	- Edge bending: stiffness varies at $(t/1)^4$
	- Face stretching contribution increases stiffness of foam or scaffold
	- Depends on distribution of solid between faces and edges
	- Depends on fraction of open and closed cells
	- A small fraction of closed cells can have a substantial effect on the stiffness of a scaffold

Refinements to Models

• Closed cells: enclosed gas

- Can be important for very flexible foams in which the cell membranes do not rupture postbuckling (e.g. C-G scaffolds)
- Can estimate contribution by using ideal gas law

$$
E_s^* = \frac{p_o(1-2\nu^*)}{\left(1-\rho^*/\rho_s\right)}
$$

Refinements to Models

- Fluid effect:
	- In open cell foams, viscous resistance of fluid moving between pores can increase stiffness

$$
\sigma_{\text{fluid}} = \frac{C\mu\text{A}L}{1-\varepsilon}\left(\frac{L}{l}\right)^2
$$

Summary CG Scaffolds

 $E/E_s = C(\rho/\rho_s)^2$

 $\sigma'/E_s = C(\rho/\rho_s)$

 $\varepsilon_{D} = 1 - 1.4 (\rho / \rho_{s})$

Scaffolds for Bone Regeneration

- Bone
	- Type I collagen and hydroxyapatite
- Currently working on mineralization of CG-scaffold (CMI)
- MIT: processing of uniform scaffolds
- Cambridge: co-precipitation of collagen-calcium phosphate

Scaffolds for Bone Regeneration

- Modulus of scaffolds can be modelled using previous equation
- Equation for compressive strength based on elastic buckling mode of failure
- Mineralized scaffolds fail by strut fracture

Strength of Mineralized Scaffolds

Diagram removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

$$
M_f \propto \sigma_{fs} t^3
$$

$$
\sigma_{cr}^*\propto\frac{M_{f}}{l^3}
$$

$$
\frac{\sigma_{cr}^*}{\sigma_{fs}} = C \left(\frac{t}{l}\right)^3 = C \left(\frac{\rho^*}{\rho_s}\right)^{3/2}
$$

Strength of Mineralized Scaffolds

Graph of "Crushing Strength" removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

Metallic Foams for Trabecular Bone Replacement

Image removed due to copyright considerations. Bone photo from Gibson LJ. The mechanical behavior of cancellous bone. *J. Biomechanics* 18:5 (1985) 317-328.

Image removed due to copyright considerations. Metal foam photo from Gioux G, McCormack TM and Gibson LJ. Failure of aluminum foams under multiaxial loads. *International Journal of the Mechanical Sciences* 42 (2002) 1097-1117.

Properties of Metallic Foams

- Modulus given by previous equation
- Strength governed by formation of *plastic hinges* in struts

Strength of Metallic Foams

Diagram removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

$$
M_{p} \propto \sigma_{ys} t^{3}
$$

$$
\sigma_{pl}^* \propto \frac{M_p}{l^3}
$$

$$
\frac{\sigma_{pl}^*}{\sigma_{ys}} = C \left(\frac{\rho^*}{\rho_s}\right)^{3/2}
$$

Strength of Metallic Foams

Graph of Yield Strength removed for copyright reasons. See Gibson, L.J. and M.F. Ashby. *Cellular Solids: Structure and Properties*. New York: Cambridge University Press, 1997.

Summary

• Models for cellular solids can be applied to porous scaffolds

$$
E/E_s = C \left(\rho / \rho_s \right)^2
$$

$$
\sigma'/E_s = C\left(\rho/\rho_s\right)^2
$$

$$
\frac{\sigma_{cr}^*}{\sigma_{fs}} = C \left(\frac{\rho^*}{\rho_s}\right)^{3/2}
$$

$$
\frac{\sigma_{pl}^*}{\sigma_{ys}} = C \left(\frac{\rho^*}{\rho_s}\right)^{3/2}
$$