

- Finite Element and Spectral Methods
 - Galerkin Methods
 - Computational Galerkin Methods
 - Spectral Methods
 - Finite Element Method
 - Finite Element Methods
 - Ordinary Differential Equation
 - Partial Differential Equations
 - Complex geometries

Partial Differential Equations

Galerkin's Method

Differential Equation

$$\sum_{j=1}^N a_j(L(\phi_j),\phi_k) = -(L(u_0),\phi_k)$$

Galerkin's Method Example

Differential Equation

$$\frac{dy}{dx} - y = 0$$

Boundary Conditions

$$y = 1$$
, $x = 0$

2.8

exp(x)

 $a_0 = 1$

Galerkin's Method Example

Remainder

$$R = -1 + \sum_{j=1}^{N} a_j (jx^{j-1} - x^j)$$

Complete Test Function Set

$$(R, x^{k-1}) = 0$$
, $k = 1, \dots N$

Algebraic Equations

 $\mathbf{M}\mathbf{a}=\mathbf{d}$

$$d_k = (1, x^{k-1})$$
$$m_{kj} = (jx^{j-1} - x_j, x^{k-1}) = \frac{j}{j+k-1} - \frac{1}{j+k}$$

Lecture 21

Galerkin's Method Example

N	=	3	

$$\mathbf{a}^T = [1.0141, 0.4225, 0.2817];$$

Lecture 21

Galerkin's method Viscous Flow in Duct

Galerkin's Method **Viscous Flow in Duct**

Remainder

$$R = -\left[\sum_{i=1,3,5...}^{N} \sum_{j=1,3,5...}^{N} a_{ij} \cos i\frac{\pi}{2}x \cos j\frac{\pi}{2}y \left\{ \left(i\frac{\pi}{2}\right)^{2} + \left(j\frac{\pi}{2}\right)^{2} \right\} - 1 \right]$$

Inner product
$$\left(R, \cos k\frac{\pi}{2}x \cos \ell\frac{\pi}{2}y\right), i, j = 1, 3, 5, \dots$$

Analytical Integration
$$a_{ij} = \left(\frac{8}{\pi^{2}}\right)^{2} \frac{(-1)^{(i+j)/2-1}}{ij(i^{2} + j^{2})}$$

Galerkin Solution
$$\tilde{w} = \left(\frac{8}{\pi^{2}}\right)^{2} \sum_{i=1,3,5...}^{N} \sum_{j=1,3,5...}^{N} \frac{(-1)^{(i+j)/2-1}}{ij(i^{2} + j^{2})} \cos i\frac{\pi}{2}x \cos j\frac{\pi}{2}y$$

Flow Rate
$$\dot{q} = \int_{-1}^{1} \int_{-1}^{1} \widetilde{w}(x, y) dx dy$$
$$\left(\frac{8}{\pi^{2}}\right)^{3} \frac{N}{2} = \frac{N}{2}$$

Flow in Duct - Galerkin

 $= 2\left(\frac{\sigma}{\pi^2}\right) \sum_{i=1,3,5\dots} \sum_{j=1,3,5\dots} \frac{1}{i^2 j^2 (i^2 + j^2)}$

Numerical Marine Hydrc

2.29

Computational Galerkin Methods

Differential Equation L(u) = 0Residuals $L(\widetilde{u}) = R$ $I(\widetilde{u}) = R_I$ $S(\widetilde{u}) = R_B$ **Boundary problem** PDE satisfied exactly Boundary Element Method R = 0 Panel Method $R_B = 0$ Spectral Methods $R,R_B\neq 0$ **Global Test Function** Inner problem $\widetilde{u}(\mathbf{x},t) = u_0(\mathbf{x},t) + \sum_{i=1}^{n} a_j \phi(\mathbf{x},t)$ Boundary conditions satisfied exactly Finite Element Method **Time Marching** Spectral Methods $\widetilde{u}(\mathbf{x},t) = u_0(\mathbf{x},t) + \sum_{j=1}^N a_j(t) \phi(\mathbf{x})$ Mixed Problem Weighted Residuals $(R, w_k(\mathbf{x})) = 0, k = 1, \dots N$

$\lim_{N o\infty} ||\widetilde{u}-u||_2=0$

Method of Weighted Residuals

Inner Product

Weighted Residuals

$$\frac{dy}{dx} - y = 0$$

du

$$y = 1 + \sum_{j=1}^{n} a_j x^j$$

Least Squares

Subdomain Method

Methods of Weighted Residuals

Comparison of coefficients for approximate	
solution of $dy/dx - y = 0$	

Coefficient Scheme	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃
Least squares	1.0131	0.4255	0.2797
Galerkin	1.0141	0.4225	0.2817
Subdomain	1.0156	0.4219	0.2813
Collocation	1.0000	0.4286	0.2857
Taylor series	1.0000	0.5000	0.1667
Optimal $L_{2,d}$	1.0138	0.4264	0.2781

Figure by MIT OCW.

Comparison of approximate solutions of dy/dx - y = 0

x	Least squares	Galerkin	Subdomain	Collocation	Taylor series	Optimal $L_{2,d}$	Exact
0	1 0000	1 0000	1 0000	1 0000	1 0000	1 0000	1 0000
0.2	1.2219	1.2220	1.2223	1.2194	1.2213	1.2220	1.2214
0.4	1.4912	1.4913	1.4917	1.4869	1.4907	1.4915	1.4918
0.6	1.8214	1.8214	1.8220	1.8160	1.8160	1.8219	1.8221
0.8	2.2260	2.2259	2.2265	2.2206	2.2053	2.2263	2.2255
1.0	2.7183	2.7183	2.7187	2.7143	2.6667	2.7183	2.7183
$\ y_a - y \ _{2,d}$	0.00105	0.00103	0.00127	0.0094	0.0512	0.00101	

Figure by MIT OCW.

Solution for Nodal Unknowns $u(x,y) = \sum_{j=1}^{N} \overline{u}_{j} \phi_{j}(x,y)$ 1 Dimension $u=\sum_{\ell=1}^N a_\ell \psi_\ell(x,y)$ $\Psi \mathbf{a} = \mathbf{u}$ 2 Dimensions $\mathbf{a} = \Psi^{-1}\mathbf{u}$ i +1 j +1 i - 1 j+1 η=1 j+1 D ξ= -1 ξ=1 ξ $u \;\;=\;\; \sum_{\ell=1}^N \sum_{j=1}^N \Psi_{\ell j}^{-1} \overline{u}_j \psi_\ell(x,y)$ С η=-1 'i + 1 i-1 $= \sum_{j=1}^{N} \overline{u}_{j} \left\{ \sum_{\ell=1}^{N} \Psi_{\ell j}^{-1} \psi_{\ell}(x, y) \right\}$ A В i-1 j-1 j-1 i+1 j-1 $\phi_j(x,y) = \sum_{\ell=1}^N \Psi_{\ell j}^{-1} \psi_\ell(x,y)$

Lecture 21

Complex Boundaries Isoparametric Elements

Figure by MIT OCW.

Finite Elements 1-dimensional Elements

Trial Function Solution

$$\widetilde{u} = \sum_{j=1}^{N} N_j(x) \overline{u}_j$$

Interpolation Functions

$$N_2 = \frac{x - x_1}{x_2 - x_1}$$

$$N_2 = \frac{x - x_3}{x_2 - x_3}$$

$$N_3 = \frac{x - x_2}{x_3 - x_2}$$

$$N_2 = \frac{x - x_4}{x_3 - x_4}$$

Finite Elements 1-dimensional Elements

Quadratic Interpolation Functions

$$N_3 = \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

$$N_3 = \frac{(x - x_4)(x - x_5)}{(x_3 - x_4)(x_3 - x_5)}$$

Figure by MIT OCW.

$$N_2 = \frac{(x-x_3)(x-x_5)}{(x_4-x_3)(x_4-x_5)}$$

$$N_2 = \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)}$$

Finite Elements **2-dimensional Elements**

2.29

Numerical Marine Hydrodynamics

Lecture 21

Finite Elements 2-dimensional Triangular Elements

Triangular Coordinates

$$L_{1} = \frac{a_{1} + b_{1}x + c_{1}y}{2A_{T}}$$
$$L_{2} = \frac{a_{2} + b_{2}x + c_{2}y}{2A_{T}}$$
$$L_{3} = 1 - N_{1} - N_{2}$$

$$egin{array}{rcl} a_1 &=& x_2 y_3 - x_3 y_2 \ b_1 &=& y_2 - y_3 \ c_1 &=& x_3 - x_2 \end{array}$$

$$egin{array}{rcl} a_2 &=& x_3y_1 - x_1y_3 \ b_2 &=& y_3 - y_1 \ c_2 &=& x_1 - x_3 \end{array}$$

Interpolation Functions

$$N_1 = L_1$$

 $N_2 = L_2$
 $N_3 = L_3$

1

Lecture 21

Two-Dimensional Finite Elements Flow in Duct

Finite Element Solution

$$\widetilde{w} = \sum_{j=1}^{N} \overline{w}_j N_j(x, y)$$

$$N_j = 0.25(1 + \xi_j \xi)(1 + \eta_j \eta)$$

$$\left(\frac{\partial^2 \widetilde{w}}{\partial x^2}, N_k\right) + \left(\frac{\partial^2 \widetilde{w}}{\partial x^2}, N_k\right) = (-1, N_k)$$

Integration by Parts

$$\left(\frac{\partial^2 w}{\partial x^2}, N_k\right) \equiv \int_{-1}^1 \frac{\partial^2 w}{\partial x^2} N_k = \left[\frac{\partial w}{\partial x} N_k\right]_{-1}^1 - \int_{-1}^1 \frac{\partial w}{\partial x} \frac{dN_k}{dx}$$

$$\left(\frac{\partial^2 \widetilde{w}}{\partial x^2}, N_k\right) = -\left(\frac{\partial \widetilde{w}}{\partial x}, \frac{\partial N_k}{\partial x}\right)$$

Algebraic Equations

$$-\sum_{j=1}^{N} \left(\int_{-1}^{1} \int_{-1}^{1} \frac{\partial N_{j}}{\partial x} \frac{\partial N_{k}}{\partial x} + \frac{\partial N_{j}}{\partial y} \frac{\partial N_{k}}{\partial y} \, dx dy \right) \overline{w}_{j} = -\int_{-1}^{1} \int_{-1}^{1} 1N_{k} dx dy, k = 1, \dots N$$