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2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING


CAMBRIDGE, MASSACHUSETTS 02139


2.29 NUMERICAL FLUID MECHANICS— SPRING 2007 

Solution of Problem Set 3 
Totally 120 points 

Posted 04/03/07, due Thursday 4 p.m. 04/19/07, Focused on Lecture 8 to 17 

Problem 3.1 (15 points): 

Consider the following system of equations: 

Ax = b, A =

1 2 !1

2 8 0

!1 0 4

"

#

$
$
$

%

&

'
'
'

, b =

0

8

4

"

#

$
$
$

%

&

'
'
'

a) 
b) 
c) 
d) 

e) 

Cholesky factorize A (Note that A is positive definite). 
Find an LU factorization form for A. 
Use LU factorization of A to find x. 
Compute the x by two iterations of successive over-relaxation scheme. Use relaxation 
parameter and initial guess of zero. 
Compute the solution by 4 iterations of conjugate gradient method. 

Solution: 
a) We need to find the lower triangular matrix L such that A = LL

* . However, since A is 
positive definite the “L” elements are real and we have A = LL

*
= LL

T . So we need to 
solve the below equations: 

Find L =

l
11

0 0

l
21

l
22

0

l
31

l
32

l
33

!

"

#
#
#

$

%

&
&
&

, such that A = LL
T
and l

ii
> 0

l
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l
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l
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l
31

l
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l
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l
22

2
+ l

21

2
l
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l
31
+ l

22
l
32

l
11
l
31

l
21
l
31
+ l

22
l
32

l
33

2
+ l

32

2
+ l

31

2

!

"

#
#
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$

%

&
&
&

=

1 2 '1

2 8 0

'1 0 4

!

"

#
#
#

$

%

&
&
&

The above equation can be solved very easily: 
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So we have: 

l
11
= 1, l

21
= 2, l

31
= !1

l
22
= 8 ! l

21

2
= 2

l
32
= !

l
21
l
31
+ 0

l
22

= !
2 " !1

2
= 1

l
33
= 4 ! l

32

2
! l

31

2
= 2

L =

1 0 0

2 2 0

!1 1 2

"

#

$
$
$

%

&

'
'
'

Alternatively we could use the below formula 

b) The Cholesky decomposition is already a “LU” factorization form so1: 

c) 

L =

1 0 0

2 2 0

!1 1 2

"

#

$
$
$

%

&

'
'
'
,U = L

T
=

1 2 !1

0 2 1

0 0 2

"

#

$
$
$

%

&

'
'
'

We have to find y such that Ly = b and then we have to find x such that Ux = y : 

Ly = b!

1 0 0

2 2 0

"1 1 2

#

$

%
%
%

&

'

(
(
(
y =

0

8

4

#

$

%
%
%

&

'

(
(
(

! y =

0

4

0

#

$

%
%
%

&

'

(
(
(

Ux = y!

1 2 "1

0 2 1

0 0 2

#

$

%
%
%

&

'

(
(
(
x =

0

4

0

#

$

%
%
%

&

'

(
(
(

! x =

"4

2

0

#

$

%
%
%

&

'

(
(
(

1 Otherwise we can use the Gaussian Elimination and find L and U accordingly: 

L =

1 0 0

2 1 0

!1 0.5 1

"

#

$
$
$

%

&

'
'
'

,U =

1 2 !1

0 4 2

0 0 2

"

#

$
$
$

%

&

'
'
'
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d) Since the matrix is positive definite, we do not need to impose diagonally dominant 
condition. As a result we can use the below format for Gauss-Seidel: 

Ax = b!

x
1
= "2x

2
+ x

3

x
2
= "

x
1

4
+1

x
3
=
x
1

4
+1

#

$

%
%
%

&

%
%
%

Also for the relaxation we have: 
xi
(n+1)

= (1!" )xi
(n)

+"xi
(n+1)

, where xi
n+1
is the "n +1" iterateon xi computed by Gauss! Seidel from x

So we have: 

x
(0)

=

0

0

0

!

"

#
#
#

$

%

&
&
&

x1
(1)
= '2 ( 0 + 0 = 0) x1

(1)
= (1'1.5) ( 0 +1.5 ( 0 = 0

x2
(1)
= '

0

4
+1 = 1 ) x2

(1)
= (1'1.5) ( 0 +1.5 (1 = 1.5

x3
(1)
= +

0

4
+1 = 1 ) x3

(1)
= (1'1.5) ( 0 +1.5 (1 = 1.5

x
(1)
=

0

1.5

1.5

!

"

#
#
#

$

%

&
&
&

x1
(2)

= '2 (1.5 +1.5 = '1.5 ) x1
(2)

= (1'1.5) ( 0 +1.5 ( '1.5 = '2.25

x2
(2)

= '
'2.25

4
+1 = 1.5625) x2

(2)
= (1'1.5) (1.5 +1.5 (1.5625 = 1.59375

x3
(2)

= +
'2.25

4
+1 = 0.4375) x3

(2)
= (1'1.5) (1.5 +1.5 ( 0.4375 = '0.09375

x
(2)

=

!2.25

1.59375

!0.09375

"

#

$
$
$

%

&

'
'
'

e)	 Mathematically by at most “n=3” iterations we have to find the exact solution. 
However in practice there will be still errors due to numerical truncations. The good 
thing about conjugate gradient’s method and other iterative methods is that they are 
selfcorrective and their repeated application decrease the accumulate errors due to 
numerical truncation (as seen in the program run). 
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The algorithm follows the above formula and it is implemented in the attached file 
“C2p29_PSET3_1.m”. Here is the output: 
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Problem 3.2 (10 points): Polynomial Interpolation 

Consider the below (x,y) pairs: 

x =

!2

0

1

2

"

#

$
$
$
$

%

&

'
'
'
'

, y = f (x) =

2

0

1

!2

"

#

$
$
$
$

%

&

'
'
'
'

a) Find the Lagrange polynomial for above points. 
b) Interpolate that polynomial at x=-1. 
c) Find the ordered polynomial for above points with Newton’s formula. 
d) Interpolate the ordered polynomial at x=-1. 
e) Find the 3rd order interpolating polynomial with forming a linear system of 

equations. 
f) Interpolate the above polynomial at x=-1. 

Solution: 
a) 

L(x) = 2 !
(x " 0)(x "1)(x " 2)

("2 " 0)("2 "1)("2 " 2)
+ 0 !

(x " ("2))(x "1)(x " 2)

(0 " ("2))(0 "1)(0 " 2)

+1!
(x " ("2))(x " 0)(x " 2)

(1" ("2))(1" 0)(1" 2)
" 2 !

(x " ("2))(x " 0)(x "1)

(2 " ("2))(2 " 0)(2 "1)

L(x) = !
x(x !1)(x ! 2)

12
!
(x + 2)x(x ! 2)

3
!
(x + 2)x(x !1)

4

L(x) =
!2x

3
+ 5x

3

b) 

L(!1) =
2 ! 5

3
= !1
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c) 

x f (x)

!2 2

0 0

1 1

2 !2

"

#

$
$
$
$
$
$
$
$$

%

$
$
$
$
$
$
$
$
$

0 ! 2

0 ! (!2)
= !1

1! 0

1! 0
= 1

!2 !1

2 !1
= !3

"

#

$
$
$
$
$
$
$$

%

$
$
$
$
$
$
$
$

1! (!1)

1! (!2)
=
2

3

!3!1

2 ! 0
= !2

"

#

$
$
$
$

%

$
$
$
$

(!2) !
2

3

2 ! (!2)
= !

2

3

N(x) = 2 + (!1) " (x ! (!2)) +
2

3
" (x ! (!2))x + (!

2

3
) " (x ! (!2))x(x !1)

N(x) = 2 !1" (x + 2) +
2

3
" (x + 2)x !

2

3
" (x + 2)x(x !1)

N(x) =
!2x

3
+ 5x

3

d)	 Note that L(x)=N(x) and they pass from the same 4 pairs of points. Indeed both Newton’s 
scheme and Lagrange’ scheme refer to the same ordered polynomial and they are both two 
different method to find the same polynomial. 

N(!1) = L(!1) = !1

p(x) = a
3
x
3
+ a

2
x
2
+ a

1
x + a

0
e) We have to find the 3rd order polynomial	 such that it passes 

through all our points. This leads to: 

x =

!2

0

1

2

"

#

$
$
$
$

%

&

'
'
'
'

, y =

2

0

1

!2

"

#

$
$
$
$

%

&

'
'
'
'

(

(!2)3

0

1

2
3

(!2)2

0

1

2
2

!2

0

1

2

1

1

1

1

"

#

$
$
$
$

%

&

'
'
'
'

a
3

a
2

a
1

a
0

"

#

$
$
$
$

%

&

'
'
'
'

=

2

0

1

!2

"

#

$
$
$
$

%

&

'
'
'
'
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a3

a2

a1

a0

!

"

#
#
#
#

$

%

&
&
&
&

=

'2

3

0

5

3

0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

, p(x) =
'2x3 + 5x

3
= N(x) = L(x)

f) Since they will all have the same value. However, in general as the 
number of points becomes larger the Newton’s method happens to be more efficient and it 
also provides better-localized information. Note that the coefficient matrix that is used in the 
linear equation is Vandermonde matrix which is basically a bad-conditioned matrix. 

Problem 3.3 (35 points): Streamlines 

p(x) = N(x) = L(x)

For a uniform inviscid flow passing a sphere with radius “R”, the potential field is given by: 

!(r,") =U(r +
R
3

2r
2
)cos(")

Here U is the far field velocity and the far field pressure is zero. 

a) Find the velocity field. 
b) Find the tangential and normal acceleration of fluid particles. 
c) Find the analytical form of the streamline that passes through arbitrary point of 

. Simplify the relation for the case when . 

d)	 Derive an analytical differential equation for the distance increment 
traveled by a particle fluid at a given position from its velocity components. Note that 
“s” is the path length traveled by fluid particle. 

Now do the following for 
e) Integrate the streamline differential equation as well as the path length differential 

equation. For the integration use the fixed step size and continue as long 

as	 . Assume that . 

f)	 Plot the analytical form of streamlines as well as the numerical form obtained in 
previous part. 

g) Plot both “r( )” and “s( )” for each streamline. 
h) Fit a series of splines to your s( ) discrete points computed at part “e”. Then 

differentiate your fit two times to compute the tangential acceleration and compare it 
with the analytical value at the same 

r
0
= 1.01R,1.1R,1.5R, 3R : 

! . 
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Solution: 
a) 

 

r
V = !"

V
r
=

#"

#r
= U(1$ (

R

r
)
3
)cos(%)

V% =
1

r

#"

#%
= $U(1+

1

2
(
R

r
)
3
)sin(%)

b)	 The acceleration can be computed by using the Navier Stokes equation in the 
spherical coordinate. Here is the symbolic derivation’s from Maple (attached Maple 
file “C2p29_PSET3_3.mw”): 

By now we have computed the radial and angular components of acceleration. Now we can find 
the angular and radial components of acceleration by definition of tangential vector. 

 

r
V = V

r
ê
r
+V

!
ê
!

ê
t
=
V
r
ê
r
+V

!
ê
!

r
V

, where
r
V

2

= V
r

2
+V

!

2
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The normal vector is arbitrary defined such that ê
t
.ê
n
= 0 . 

 

ê
n
=
!V

"
ê
r
+V

r
ê
"

r
V

, where
r
V

2

= V
r

2
+V

"

2

 

ê
n
=
!V

"
ê
r
+V

r
ê
"

r
V

, where
r
V

2

= V
r

2
+V

"

2

 

r
a = a

r
ê
r
+ a

!
ê
!
= a

t
ê
t
+ a

n
ê
n

a
t
=

r
a.ê

t

a
n
=

r
a.ê

n

It is not important, to derive the symbolic forms of above values, but just for comparison: 

c) , we have2:Note that for the fluid particle passing through point (r,!)

V
r
=

dr

dt

V! = r
d!

dt

"

#

$
$

%

$
$

&
V
r

V!

=
1

r

dr

d!
&

dr

d!
= r

V
r

V!

2 Alternatively you can use streamline equations in spherical coordinate, but note that they are different 
than their corresponding version in cylindrical coordinate: 

V
r
=

1

r
2
sin(!)

"#

"!

V! =
$1

r sin(!)

"#

"r
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d) 

dr

d!
= r

V
r

V
!

= "r

(1" (
R

r
)
3
)cos(!)

(1+
1

2
(
R

r
)
3
)sin(!)

1

tan(!)
d! =

r
3
+
1

2
R
3

"r(r
3
" R

3
)
dr

1

tan(!)
d! = "

1

2
("
1

r
+

3r
2

(r
3
" R

3
)
)dr

!!!!
!0

!

" #
R0

r

"

ln(sin(!)) !0

!
=
1

2
(ln(r) $ ln(r3 $ R3))

r0

r

ln(sin(!)) !0

!
=
1

2
(ln(

r

r
3 $ R3

))
r0

r

ln(
sin(!)

sin(!0 )
)!!=

1

2
(ln(

r

r0

r0
3
" R

3

r
3
" R

3
))

!!!(
sin(!)

sin(!0 )
)
2
=

r

r0

r0
3
" R

3

r
3
" R

3

!
0
=
"

2
# sin(!)

2
=
r

r
0

r
0

3
$ R

3

r
3
$ R

3

ds

dt
= V

V! = r
d!

dt
"

dt

d!
=
r

V!

#

$
%%

&
%
%

"
ds

d!
= r

V

V!

Note that while we have V = V
!

2
+V

r

2 , it is not wise to write the relation as 

or start from general algebra by 
ds

d!
= r

2
+ (

dr

d!
)
2 . That’s because the new 

relations will introduce some errors whenever V
!
is negative (including our case when indeed 

ds

d!
= r 1+ (

V
r

V
!

)
2

ds

d!
" 0 ).
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e) The below system of differential equations are integrated in the attached file 
“C2p29_PSET3_3.m”, using a fixed step size !" = 0.05 with Runge-Kutta method. 
Qunatities are normalized by “U” and “R” values. Apparently even !" = 0.5 holds 

fairly accurate results. Plots are shown on the next page. Note that while 
s

R
and

tU

R

graphs are very similar, careful examination shows that they are slightly different. 

dr

d!
= r

V
r

V
!

ds

d!
= r

V

V
!

dt

d!
=
r

V
!
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f) Done within the same file and apparently very accurate. 

g)	 Previous plots. 
h)	 For extra simplicity the time is also integrated, so we can directly compute s(t) and 

differentiate it to compute the tangential acceleration. Consequently, “s(t)” is fit into a 

series of splines and two boundary conditions are added for the fit from 
ds

dt
= V at “t” 

corresponding to 	! =
"

2
and !

max
. The results for a

t
=
d
2
s

dt
2

are shown on the next 

page and they are reasonably accurate. 

Alternatively we could differentiate the fit at part “d”: 

s = s(!)

ds

dt
=
ds

d!

d!

dt

a
t
=
d
2
s

dt
2
=
d
2
s

d!
2
(
d!

dt
)
2
+
ds

d!

d
2
!

dt
2

The differentiations can be computed as below: 

V
!
= r

d!

dt
"

d!

dt
=
V
!

r
= #U(

1

r
+
1

2

R

r
4

3

)sin(!) = f (r,!)

d
2
!

dt
2
=
"f

"r

dr

dt
+
"f

"!

d!

dt
=
"f

"r
Vr +

"f

"!

V
!

r

!f

!r
=!!!U(

1

r
2
+ 2

R

r
5

3

)sin(")

!f

!"
= #U(

1

r
+
1

2

R

r
4

3

)cos(")
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Problem 3.4 (60 Points): Textbook problems 

Solve the below problems from “Chapara and Canale” textbook. Note that you can use MATLAB 
functions whenever possible. 

• 11.18, 11.20 
• 13.8,13.9, 13.11 
• EXTRA CREDIT: 13.19 (5 Points) 
• 14.8, 14.12 
• 17.12, 17.29 
• 18.4 
• EXTRA CREDIT: 18.9 (5 Points) 
• 19.18 
• 20.19 
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• 21.7 
• 22.9 only part b, 22.13 
• 23.19 
• EXTRA CREDIT: 23.26 (5 Points) 

Solutions: 

Textbook problem 11.18 

We find an upper bound for the error similar to the example 10.4 of the book. Note that we 
have to use the same type of norm for both “A” matrix and the “x” solution. So we expect that at 

1.8 !10
"3least up to 2.7 significant digits are accurate (a relative error equal to ). However, for our 

choice of “b” the actual solution is accurate up to 4-5 significant digits (a relative error equal to 
0.87 !10

"3 ). 
Furthermore note that MATLAB by default uses the double format, which has 52 bits for 

mantissa. This means that the coefficients of A has at most a relative error equal to the 
2
!52

2
(also 

recall from homework problem 1.2 that “2^-53=eps(0.5)” ). 
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Textbook problem 11.20 

 

flops
Thomas

(n) = 3(n !1)

Decomposition

124 34
+ 2(n !1)

Forward

124 34
+1+ 3(n !1)

Backward

1 24 34
= 8n ! 7

flops
Gauss

!!(n) =
2n

3

3
+
3n

2

2
!
7n

6
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Textbook problem 13.8 

Note that as x! ±"# f ! $" . So since the function is continuous it will have at least 
one global maximum. 

>> syms x 
>> f=-x^4-2*x^3-8*x^2-5*x; 
>> ezplot(f),box on,grid on 
>> df=diff(f) 

df = 

-4*x^3-6*x^2-16*x-5 

>> d2f=diff(df) 

d2f = 

-12*x^2-12*x-16 

>> roots_df=double(solve(df)) 

roots_df = 

-0.3473 
-0.5764 + 1.8076i 
-0.5764 - 1.8076i 

>> x=roots_df(1); % The only real root and the only candidate as an extreme point 
>> df_extreme=eval(d2f) % If it is smaller than zero, then it is a maximum 

df_extreme = 

-13.2800 

>> 
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Textbook problem 13.9 

Part a,b are based on attached file “C2p29_PSET3_13p9.m”. Part c is based on the previous file 
“solver.m” from PSET#2 which is attached again. Clearly quadratic interpolation and Newton’s method 
have faster convergence rate. 

Furthermore, note that during quadratic interpolation, while we have x
0
! x

1
! x

2
, the x

3
will be 

either x
3
! x

0
, x
1[ ] or x

3
! x

1
, x

2[ ] . So this condition should be checked prior to the selection of points for 
the next step. 

Running C2p29_PSET3_13p9.m: 

Calling solver.m: 
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Textbook problem 13.11 

The previous “solver.m” from PSET#2 is used again: 

(EXTRA CREDIT) Textbook problem 13.19 

The problem is equivalent to the simpler problem of 

(because y(x) = K !
x

L

"
#$

%
&'
5

+ 2
x

L

"
#$

%
&'
3

!
x

L

"
#$

%
&'

"

#
$

%

&
' ,!!!!!!0 ( x ( L

) 3. Here the previous file 

max
0!s!1

("s
5
+ 2s

3
" s) #

find s*

x
*
= s

*
L

3 Here we can find the analytical solution: 

max
0!s!1

( f (s) = "s
5
+ 2s

3
" s) #

find s*

f '(s
*
) = 0

" 5s
*4
+ 6s

*2
"1 = ("5s

*2
+1)(s

*2
"1)# s

*
=
1

5
$ 0.4472

18




2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

“C2p29_PSET3_13p9.m” is slightly modified and used again. Note that we are looking for 
minimum of “y” and it is equivalent to the maximum of “-y”. 

The maximum absolute value of deflection happens at s
*
= 0.448 and hence at 

x
*
= s

*
L = 0.448 ! 600cm = 268.8cm .


Textbook problem 14.8 
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We have to find the roots of 
df (h)

dh
, and compare the value of “f” at h=0 (current point) and new 

point hopt , s.t.
df (hopt )

dh
= 0 . The new point x=1,y=-1.5 corresponding to hopt = !

1

8
has a smaller value of 

“f” and the optimal gradient steepest descent method has been successful (changing “f” from 0 to -13). The 
next step comes to x=2.5, y=-0.5 and decreases f to the “-16.25”. 
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2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

Textbook problem 14.12 
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2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

Textbook problem 17.12 

The equation is linearized by below formula and then the MATLAB function “polyfit” is used to 
find the coefficients ln(! 4 ),"4 : 

y = ! 4xe
"4 x

y

x
= ! 4e

"4 x # ln(
y

x
) = ln(! 4 ) + "4x

22




2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

Textbook problem 17.29 

There are a couple of techniques: 
• Using MATLAB curve fitting tool by an optional fit (next page): 

This provides a confidence level as well. The default search technique is “trust region” 
and we found out that !

4
= "2.532, #

4
= 9.897 . This is comparable to the previous 

problem where we used a linearized model and found out that !
4
= "2.473, #

4
= 9.662 . 

• Use nonlinear regression method described in the section 17.5 (implemented in 
“C2p29_PSET3_17p29.m”): 

y = !
4
xe

"
4
x

#y

#!
4

= xe
"
4
x

#y

#"
4

= !
4
x
2
e
"
4
x

The initial guess is set to !
4
= 0, "

4
= 1 . By 8 iterations we found out that 

!
4
= "2.532, #

4
= 9.897 . The result is equal to the previous fit and it is not sensitive to 

the initial guess. Here is the program output and the plot is shown on page 25: 

• Use residual techniques with nonlinear fit (similar to MATLAB fit). 
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2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

Textbook problem 18.4 

For the best estimate, we have to reorder the numbers so that they are as close to x=2.8 as 
possible. The error in each order is approximated by the term from the next order. The below graph 
shows the schematic evaluation, while indeed MATALB functions “diff, prod, sum” can be used to 
conveniently compute different orders, as shown on the next page. 

x f (x)

2.5 14

3.2 15

2 8

4 8

1.6 2

!

"

#
#
#
#
#
#
#
#
#
#
#
#

$

#
#
#
#
#
#
#
#
#
#
#
#

0.7 1.429

%1.2 5.833

2 0

%2.4 2.5

!

"

#
#
#
#
#
#
#
##

$

#
#
#
#
#
#
#
#
#

%8.809

%7.292

%6.25

!

"

#
#
#
#
##

$

#
#
#
#
#
#

1.012

%0.651

!

"

#
##

$

#
#
#

1.848

p1(x) = 14 + (1.429) ! (x " 2.5)

p2 (x) = 14 + (1.429) ! (x " 2.5) " 8.809 ! (x " 2.5)(x " 3.2)

p3(x) = 14 + (1.429) ! (x " 2.5) " 8.809 ! (x " 2.5)(x " 3.2) + "1.012 ! (x " 2.5)(x " 3.2)(x " 4)

e1(x) ! "8.809 # (x " 2.5)(x " 3.2)

e2 (x) ! "1.012 # (x " 2.5)(x " 3.2)(x " 4)

e3(x) ! +1.848 # (x " 2.5)(x " 3.2)(x " 4)(x "1.6)
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2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

(EXTRA CREDIT) Textbook problem 18.9 

Note that there has been a typo in the book. Indeed the actual function is f (x) =
x
2

1+ x
2

. 
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Textbook problem 19.18 

Note that the sampling frequency is equal to fs =
64

2!
Hz . So !

s
= 64

rad

s
and 

consequently the angular frequencies that correspond to FFT will be limited by 

!
max

=
!

s

2
= 32

rad

s
(using Nyquist theorem). On the other hand since we are using 64 points for 

FFT, then the FFT will produce N=64 components of ! , which will be 

! = "32,"31,...,"1,0,1,..., 30,31
rad

s
. Note that since our signal is real, the FFT values at negative 

frequency is equal to positive ones, but with negative phase. Here FFT magnitude (or signal power) 
is plotted which is equal at both negative and positive frequencies. The noise has had an amplitude 
equal to “0.2”. 

Furthermore note that you need to perform two things in MATLAB: 
1) Use “fftshift” function to reorder the FFT values. (Otherwise the 0 frequency is not at 

the center). 
2) Divide the FFT by the number of points to get the correct power (or FFT magnitude) and 

also in other circumstances by other related coefficients. This is done here and we can 

see that the original signal has an amplitude equal to 0.5 at ! = "10,10,"3,3
rad

s

(because ). cos(wt) =
1

2
e
jwt

+
1

2
e
! jwt
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2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

Textbook problem 20.19 

Note that linear regressions are based on the below formula (adopted from section 17.1.2) 

n points {xi , yi}
fit into y=mx+b! "!!!!

m =
n xy # ($ x$ )( y$ )

n x
2 # ($ x$ )2

b =
1

n
( y # m($ x$ ))

%

&

'
'

(

'
'

n points {xi , yi}
fit into y=mx! "!!!! m =

xy$
x
2$

Consequently for a fit like “y=mx”, we cannot fit first to the “y=mx+b” and then omit the “b” term. 
However in both cases, the “r” is computed according to the below formula: 

r =
S
t
! S

r

S
t

The results are displayed below and detailed computation can be followed from attached file 
“C2p29_PSET3_20p19.m”. Note that both fits are implemented on 

 
( &! , " ) domain. Here are the results: 

31




2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

Textbook problem 21.7 

14
2x
= e

ln(14
2 x
)
= e

2x ln(14)
= e

2 ln(14)x

14
2x

0.5

1.5

! dx = e
2 ln(14)x

0.5

1.5

! dx =
1

2 ln(14)
e
2 ln(14)x

x=0.5

x=1.5
=

1

2 ln(14)
(e
3ln(14) " eln(14) )

14
2x

0.5

1.5

! dx =
1

2 ln(14)
(14

3 "14) =
1365

ln(14)
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The results are displayed on the below. The error follows our expected trend and clearly 
Boole’s rule has the best performance. Furthermore note that due to sharp exponential rise of the 
function, all the closed formula have overestimated the integral, while the open ones, have all 
underestimated the integral. 

Textbook problem 22.9, Part b 

e
! y
sin

2
(y)dy

0

"

# = e
! y 1! cos(2y)

2
dy

0

"

#

33




2.29: Numerical Fluid Mechanics Solution of Problem Set 3 

e
! y
sin

2
(y)dy

0

"

# =
1

2
( e

! y
dy

0

"

# ! e
! y
cos(2y)dy

0

"

# )

e
! y

sin
2
(y)dy

0

"

# =
1

2
!e! y !  

e
! y

5
(! cos(2y) + 2sin(2y))

$
%
&

'
(
) y=0

y="

e
! y
sin

2
(y)dy

0

"

# = !
1

2
(!1+

1

5
) =
2

5

We have evaluated the analytical value for the comparison. As the above graph shows, the function 
strongly decays after x = 2! . Indeed as shown below, by x = 2! the integral has already attained 99.825% 
of its value. 

For numerical evaluation the integral has been divided to two parts (following the logics of section 
22.4): 

e
! y
sin

2
(y)dy

0

"

# = e
! y
sin

2
(y)dy

0

2$

# + e
! y
sin

2
(y)dy

2$

"

#
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e
! y
sin

2
(y)dy

0

"

#
I

1 244 344

= e
! y
sin

2
(y)dy

0

2$

#
I1

1 244 344

+ e
!
1

t

sin
2
(
1

t
)

t
2

dt
0

1

2$

#
I2

1 244 344

Since I = I
1
+ I

2
and I

1
>> I

2
, the error in “ I ” is dominated by the error in I

1
. So we can very 

easily just approximate the integral with its truncated version (thanks to exponential decay of the 
function!). A take home message could be that for fast decaying function we can approximate the improper 
integral by truncated version. 
Now regardless of this fact, we try to evaluate each part numerically. Both parts are evaluated by 5 points 
evaluation. The first part uses Boole’s rule as closed integration, while the 2nd part is based on open 

lim
t!0

1

t
2
e
"
1

t sin
2
(
1

t
)

that the error is dominated by I
1

integration (because does not exist). Detailed calculations are shown below. We can see 

and is about 21%. If we implement two times application of Boole’s rule, 
the error will be dropped to 3.1%. 
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Textbook problem 22.13 

According to the logics of section 22.3.2, the integration can be approximate by the below formula 
(for two points Gauss quadrature): 

f (x)dx
a

b

! "
(b # a)
2

f
b + a

2
#
1

3

(b # a)
2

$
%&

'
()
+ f

b + a

2
+
1

3

(b # a)
2

$
%&

'
()

*
+
,

-
.
/

Note that this formula indeed refers to below linear transformation and it can be generalized as 
shown: 

x =
b + a

2
+ !
(b " a)

2
# (x = a,! = "1), (x = b,! = 1)

F(!) = f (
b + a

2
+ !
(b " a)

2
) = f (x(!))

f (x)dx
a

b

! "
(b # a)

2
ciF($i )

i=1

n

% , where ci ,$i( ) are Gauess-Quadrature Weights and Points: $i & 1

The result is shown on the next page and is implemented as shown above. Note that as usual, the 
gauss-quadrature integration accuracy is absolutely excellent (0.83% error by evaluating at only two 
points). That’s why the Gauss-quadrature method, is the preferred method for lots of applications 
(especially within finite element realm, where we know that our shape function is a polynomial). 
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Textbook problem 23.19 

The graph clearly shows superior performance of central finite difference: 
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(EXTRA CREDIT) Textbook problem 23.26 

! y=0 = µ
dv

dy
y=0

We want to compute our derivative with at least o(h2 ) accuracy. However, we cannot use the 
central finite difference scheme and we have to rely on forward derivative approximations. Since the points 
are not equally spaced we will fit a polynomial to it and then we will compute the derivative of polynomial 
at y=0 (which is the coefficient of “y” at our fitted polynomial). 

Initially we tried to use all 6 data point by fitting the data to a polynomial of order 5. This is shown 
on the next page. However, as the plot shows the “v(y)” graph is almost linear and the polynomial is badly 
conditioned. Nevertheless the linear term is rather accurate and even if we use just 3 point (2nd order 
polynomial fit) , we will get the same shear value with up to 0.2% accuracy. 
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