
2.29: Numerical Fluid Mechanics	 Solution of Problem Set 2 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING


CAMBRIDGE, MASSACHUSETTS 02139


2.29 NUMERICAL FLUID MECHANICS— SPRING 2007 

Problem Set 2 
Posted 02/25/07, due Thursday 4 p.m. 03/8/07, Focused on Lecture 4 to 7 

Problem 2.1 (6% of final grade): Advance your programming skills and review root finding methods 

Review MATLAB help about: 

•	 Function handle 
•	 eval 
•	 nargin 
•	 varargin 
•	 cell: as a data type 
•	 switch: as flow control command 
•	 fprintf 
•	 lower 

Here we want to develop a script as a generalized one dimensional solver. Later you can use it for 
next problems. The function that you write should provide the maximum ease of use, as well as the 
maximum amount of flexibility and adjustment. To that end and to develop a user friendly program: 

•	 The function should have default values for everything so that the user can run it with 
minimum number of inputs. 

•	 The input function (to be solved) should be either a function handle or a string (like 
‘3*x^3-5*x+1’). 

•	 The program should have a nice command line output or plot displaying the gradual 
progress of solution. 

•	 The user should be able to adjust/provide the below options, if necessary. Note that user 
should not need to memorize any order for them and option names should not be case 
sensitive: 

a) Method: Newton, Secant, Bi-Section, False-Position, Modified False-
Position 

b) Initial guess: it can be two numbers for methods like Bi-Section 
c) Derivative of f (note that you can compute the derivative if user 

provides you with a string as solution equation) 
d) Absolute tolerance on x or f 

1




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

e) Relative error on x 
f) Maximum number of iterations 
g) Plot 

Here is what function should be like: 

[x_solution, x_iterations, f_iterations] = solver(func_name)

[x_solution, x_iterations, f_iterations] = solver(func_name, x_guess)

[x_solution, x_iterations, f_iterations] = solver(func_name, x_guess, OPTIONS)


A few example calls are shown: 

After writing the program you have to UPLOAD IT ON THE COURSE WEBSITE and PRINT IT 
AS WELL. That’s all you have to do for this problem. This will replace the MATLAB workshop 
assignment about MATLAB programming. 

Solution: 

Look at the attached MATLAB file “solver.m”. 

2




x < 4

x > 20

x < !20

2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Problem 2.2 (10 Points): Examine your root finding script 

We are interested to find the roots of: 

f (x) = e
x
sin x + e

! x
cos

2
2x

a) 
b) 

c) 

d) 
e) 

How many roots does this equation have? 
Can you approximate analytically some roots of this equation and characterize their 
type? Discuss. 
Find all the roots where . Use above program and examine all the methods for 
any root. For each root use “plotyy” command and plot two things at the same figure: 

- x versus number of iterations 
- Relative error of x (with respect to the most trusted solution) versus number of 

iterations (use logarithmic scale if needed) 
Repeat part c and find the fist two roots where 
Repeat part c and find the fist two roots where 

Solution: 

a) Infinite number of roots, due to infinite number of oscillations generated by 
trigonometric function multiplied by an exponential function (see next part). 

b) The function can be approximated by: 

. 
. 

x! +"# f (x) $ e
x
sin x

x! %"# f (x) $ e
% x
cos

2
2x

The roots for x !" can be approximated accordingly. For x! +" , the value of function 
changes its sign so we have: 

x! +"# 0 $ e
xr sin x

r
# x

r
$ k% , where k! +"

On the other hand the situation of x! "# is a bit tricky. Here due to cos2 2x , the function 
is mostly positive (as long as governed by e! x cos2 2x ). In other words, the roots will like 
to be double roots. However, if the other term (even if exponentially small) is positive, then 
indeed we do not have a root. In that case the function gets very close to x axis but does not 
touch it. Here there are a few problems: 

- Due to zero slope, convergence will be slow for gradient methods (e.g. Newton’s 
method). 

- Even the bracketing methods will have troubles, locating initial guess. Because 
the other small negative term will make the two roots very close together. 

3




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

- Practically as long as we get very closed to x axis we have found a root. However, 
we are mathematically fooled! 

Fortunately, in this particular case we know the structure of our functions and we can 
distinguish the two cases in advance. 

x! "#$ 0 % e
" xr cos

2
2xr $ xr %

k&

2
+
&

4
, provided sin xr < 0 where k! "#

x
r
! 2k" #

"

4
, x

r
! 2k" #

3"

4
k$ #%

c) The function is plotted in the x ! 4 . We can zoom in and distinguish 5 roots in the 

given region. Note that we do not have a root around 2! "
3!

4
# 3.92 . 

The attached program C2p29_PSET2_2.m is used for this problem. The program 
calls the solver with different methods and initial guesses. In all cases the maximum 
number of iterations is set to 20 and a relative and absolute error less or equal to 10-16 

and 10-20 are chosen1. In particular the output of solver for the root around 3.2 is 
shown on the next page. 

1 Remember problem set 1 and note that eps(1) is about 2.2*10-16. As a result when a solution converges, either 
the consecutive solutions become equal or they fluctuate with a relative error of order 10-16. This can be seen in 
the plots of next page. 

4




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

As graph shows in all cases the Newton method’s has the best convergence, and 
usually converges within 7 iterations. After Newton’s method the modified false 
position scheme and secant’s scheme are the best. Bi-section is very slow but 
sometimes is better than false position. The MATLAB output in the next pages shows 
the solution summary by Newton’s method. 

5 



2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

6




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

7




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Here are the solutions by Newton’n method. Note that approximate solutions are still 

very good, albeit x is not very large ( ! " 3.14, #
!

4
= #0.79, #

3!

4
= #2.36 ). 

d) Since 
20

!
" 6.37 , the roots are expected to be around 7! , 8! . Initial guesses of 

7! ± 0.1, 8! ± 0.1are used. The plots are shown and the program output is shown as 
well. Note that in the previous case the absolute value of the function is of order 10!16 at 
the approximate root, while here cannot get better than 10!6 . This is due to very steep 
behavior of function for x !" . Furthermore, none of the method has been able to 
provide us with a better root than we approximated ahead of time. This is due to limited 
digits for computer representation and our very good approximate. 

8




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

9




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

e) 
20

2!
= 3.18, " (2! # 3+

!

4
) $ "19.63, " (2! # 4 +

!

4
) $ "25.91, " (2! # 3+

3!

4
) $ "21.21

Consequently, the roots are expected to be around ! (2" # 3+
3"

4
) $ !21.21 . This is 

almost a double root and the pair of initial guesses is constructed with ±0.2 offset from 
this middle point. To force the scheme to find the right or left root 

( !(6" +
3"

4
) < x

r
or ! (6" +

3"

4
) > x

r
) the offset value is used for Newton’s method. 

Results and plots are shown on the next pages. Like part “d” no method has been able to 
provide us with a better approximate of solution, than our analytical approximate (the 
too roots are not distinguishable). The bottom line is that sometimes we have to really 
work out our way with analytical schemes. Indeed if did not have that good initial guess, 
the solution could not even converge. Finally note that 

f (!(6" +
3"

4
)) # !4.3$10

!10 while f (!(6" +
3"

4
) ± 0.2) # 2.5 $10

8 ; consequently the 

secant and (modified) false position will choose !(6" +
3"

4
) as the right solution in a 

single iteration. On the other hand both Bi-section and Newton method will suffer from 

!(6" +
3"

4
) ± 0.2 and will converge more slowly. Furthermore, recall that Newton’s 

method has slower convergence in multiple roots and this will also contribute to our 
slow convergence rate. 

10




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

11




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Note that if we allow the Newton’s method to have more iterations, it will again pick 
up the right solutions and will distinguish the two left and right roots (which only 
differ in 13th digit). Here we have used the same initial guesses, but we needed 33 
iterations to achieve the desired relative error. 

12




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Problem 2.3 (65 Points): Textbook problem 

Solve the below problems from “Chapara and Canale” textbook: 

• 5.4, 5.9, 5.15, 5.17 (Use your previous program if you can, then copy and paste the results) 
• 6.1, 6.11, 6.15, 6.16, 6.23 
• EXTRA CREDIT: 6.25 (5 Points) 
• 10.6, 10.9, 10.12, 10.14 

Textbook problem 5.4 

By zooming in the graph we can see that roots are approximately -0.41, 2.22 and 4.74. 

13




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Textbook problem 5.9 

Textbook problem 5.15 

By zooming in the graph we can see that root is approximated by y=1.51 (m). Note as it can be 
seen the function has considerable curvature around the root. On the other hand (0.5+2.5)/2=1.5 is very 

14




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

close to actual root x=1.5140 and consequently Bi-section works better than false position. Furthermore, 
the false position method is prone to the same problem depicted in figure 5.14 of the textbook. 

Textbook problem 5.17 

a) In each iteration, the maximum absolute error is reduced by a factor of 2. The initial 

error is at most 40°C and by the end of the nth iteration it will be at most 
40°C

2
n

. Now 

we have to solve 
40°C

2
n

! 0.05°C . The minimum n to satisfy this inequality is n=10 

(which results in absolute error less than 0.039°C ) and we at least need 10 iterations. 

b) The solver.m file has been used. Slight modification are made to the file so the absolute 
error is only considered for x value (not the function value). 

15




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Textbook problem 6.1 

The root of f (x) = 2sin x ! x is equivalent to the fixed point of g(x) = 2sin x . However for the 

later to converge, we have to have 
dg

dx
=
cos x

x
! 1 . Unfortunately 

dg

dx
(x0 = 0.5) ! 1.007 and the fixed 

16




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

point with this g can be unstable. However, since g(x0 = 0.5) ! 1.29 it will escape from unstable region. 
Calculations are done in attached C2p29_PSET2_6p1.m file. 

!
a
(n) " A# n $n > n % log!

a
" n log# + logA $n > n

The process is linearly convergent because the log of relative error with respect to the iteration 
number is linear according to the below graph. 

Textbook problem 6.11 

The attached file C2p29_PSET2_6p11.m solves this problem. Basically the same solver.m with 
Newton’s method is used however we use these sets of function for this double root. 

a) f f '

b) 2 f f '

c) ff ' f '
2
! ff "

17




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

A relative error of 10!16 is imposed. The case b and c converges within 3 iterations. However, case 
“a” requires about 25 iteration; it does not overshoot but is very slow. Case c has a slightly higher 
accuracy, but we should remember that it needs extra information about 2nd derivtive. 

Textbook problem 6.15 

At the steady state 
dc

dt
= 0 and we have f (c) =W !Qc ! KV c = 0 . Again we apparently use our 

earlier solver.m module for the modified secant. We call it by Newton’s method, but we replace the 
f (c + ! ) " f (c)

!
.derivative with 

18




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Textbook problem 6.16 

We have to see which one satisfies the condition. From the graph next page we can 

conclude that the 2nd one has a guaranteed convergence for the given interval to 

dg(c)

dc
! 1

root. c
r
! 4.62

19




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Textbook problem 6.23 

Within 4 iterations it will find the exact value of root. This means that the function does not have 
considerable curvature around this root. 

20




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Textbook problem 6.25 (Extra Credit) 

The circle radius is 4 and we have x +1 ! 4"#5 ! x ! 3 . So note that: 

y
1
(x) = + 16 ! (x +1)

2
+ 2 , First Quadrant

y
2
(x) = ! 16 ! (x +1)

2
+ 2 , Fourth Quadrant

The results are shown on the next page. It converges for the 4th quadrant but not the 1st one. This is 
because in the 1st quadrant and we do not have a root (so it diverges toward complex 
numbers), while for the 4th quadrant a root exists. 

2 ! y ! 2 + 4

!4 + 2 " y " 2

21




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Textbook problem 10.6 

Similar to “b” we adopt 3 significant digits. 

A =

10 2 !1

!3 !6 2

1 1 5

"

#

$
$
$

%

&

'
'
'

, b =

27

!61.5

21.5

"

#

$
$
$

%

&

'
'
'

m
21
=
!3

10
= !0.3

m
31
=
1

10
= +0.1

A"

10 2 !1

0 !5.4 1.7

0 0.8 5.1

#

$

%
%
%

&

'

(
(
(

m
21
= !0.3

m
31
= +0.1 m

32
=
0.8

!5.4
= !0.148

A"

10 2 !1

0 !5.4 1.7

0 0 5.35

#

$

%
%
%

&

'

(
(
(

LU = A, L =

1 0 0

!0.3 1 0

+0.1 !0.148 1

#

$

%
%
%

&

'

(
(
(

, U =

10 2 !1

0 !5.4 1.7

0 0 5.35

#

$

%
%
%

&

'

(
(
(

22




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

The forward and backward substitution with corresponding chopping is done in the attached 
C2p29_PSET2_10p6.m file. We use the LU factorization to compute A!1 by 3 times of LU application. 
Finally the solution is also computed with the same technique. Here is the program output. Note that we 
used only 3 digits and the final errors are on the 4th and 5th digits. 

Textbook problem 10.9 

Note that for the scaling we divide each row by the element whose absolute value is the maximum 
of that row. 

23




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Textbook problem 10.12 

24




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Alternatively we can use “cond” command to directly compute the matrix condition number. 

Since the condition number is about 9.8 !1017 " 1018 we will lose about 18 significant digits. As a 
result the significant digits of ordinary double and single in MATLAB can be all lost (they have about 15 
and 7 significant digit). Unfortunately even the scaling does not help so much. Indeed scaling can only 

improve about 0.84 digits in base 10 ( log10 (
9.84

1.42
) ! 0.84 ). 

25




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Textbook problem 10.14 

26




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Problem 2.4 (15 Points): Computation cost in MATLAB 

Review MATLAB help about: 

• profile 
• tic 
• toc 

Here we want to investigate the computational cost of basic operations { +,!,",÷ } and some 
functions { x, x , x , x

2
, x

3
,sin x, cos x, tan x,e

x
,e

! x
, ln x } in the MATLAB program. To that end we 

generate a huge vector/matrix of random numbers and repeat the operation on them as long as to get 
consistent result. Please specify your computer speed, memory and MATLAB version. Try to provide as 
much consistency as possible. Also clear and free your memory as much as possible. In each case examine 
both single and double data type and also report the cost time normalized by your CPU clock time (for 
example for a 2 GHz computer multiply time by 

a) Report assignment cost (or function y=x). Compare cost of a scalar assignment with cost 
of matrix assignment (normalized by the number of elements). 

b) Compare cost of basic operations for scalar. Then compare +,! for the matrixes and also 
element wise . Discuss. 

c) Repeat part b for specified functions. 

Solution: 

These results are produced by: 

• MacBook 1.1 
• Intel Core Duo 2.0GHz CPU (1 processor, 2 cores, 2Mb L2 cache) 
• About 100% CPU commitment for MATLAB during runs 
• 1 Gb of 667 MHz DDR2 RAM 
• Up to 13.5 Gb of Virtual Memory 
• MATALB version R2006b 

The results might vary across different systems but the whole idea of this homework is to get an 
insight about computational cost. Here an experimental approach is used, while a better technique 
might rely on investigating the computer architecture combined with software implementations. 
Some people might use the flops for normalizing the time cost, but indeed there is a difference 
between clock and flops and here we use clock. 

The costs are evaluated for normalized positive numbers (between 0 and 1) and they are generated 
by “rand” command. The corresponding file is named C2p29_PSET1_4.m and is included in the 
script package. The costs are normalized by the number of element and the first question is that 
how much are they sensitive to matrix size and computer resources at that instant. So we consider 
the below computational block: 

2 !10
9
1 / sec ). 

!,÷

27




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

a=rand(n,n);

b=rand(n,n);


c=a; %Assignment Cost

c=a+b;

c=a-b;

c=a.*b;

c=a./b;


c=abs(a);

c=a.^2;

c=a.^3;

c=a.^.5;

c=sqrt(a);


c=sin(a);

c=cos(a);

c=tan(a);


c=exp(a);

c=exp(-a);


The above calculation is done for a matrix with size a
n!n

for “ m ” times. Accordingly it is done for 
a vector with size a

n!1
for m ! n times, as well as a scalar a for m ! n

2 times. In each case, “a,b 
and c” are allocated before going inside “times” loop; consequently our assignment cost is indeed 
just a “copy” cost and does not include memory release\allocation time. The time is computed with 
“tic, toc” command and time profiler is not used at this point because it is not as accurate as to “tic, 
toc” (due to time profiling overhead). The program is run for different pairs of “m” and “n” and a 
few sample run is shown below: 

28




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Mathematically a scalar and a vector or matrix with n=1 are equivalent. This is also true in 
MATAB, but their computation time is different. As seen above for n=1 a scalar is about 
180000/30000=6 times faster. 

When “n” becomes very big (here like 5000, which require 25*8~200 Mb of memory), MATLAB 
cannot allocate memory for it and an error is produced. Also we can notice that when m ! n

2
> 10

5

results are rather stationary for scalars up to 4th digit. So from here forward we will not compute 
scalar cost for very huge pairs of “m, n”. On the other hand for small m, numbers are not 
consistent and for loop cost might also be inferring. 

29




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Interesting conclusions can be made from above runs for n: 
• n=1: Scalars are about 6 times faster than both matrix or vector which cost the same. 
• n=10: Matrix is about 4 times faster than both vector or scalar which cost the same. 

30 



2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

• n=100: Matrix is about 13 times faster than scalars and about 2 times faster than vector. 
• n=1000: Both Matrix and vector cost about the same and are about 13 times faster than scalars. 
• n>>1000: At some point the memory limitation becomes an obstacle and the speed decrease 

first for matrixes (memory ! n
2 ) and then for vectors (memory ! n ). At this stage the time 

cost is strongly dependent on available memory and CPU commitment at that instant; and 
that’s why matrix result for n=2000 and above are strongly varying. 

“m” is the number which determine on how much large set the results are averaged. Also 
interesting conclusions can be made from above runs for m. 

m ! n
2
> 10

5
• As it was stated earlier we have to have to get rather consistent result for scalars. 

At this point the cost for scalar might still vary in 4th digit. 
• For matrix with n=100 or higher, results are pretty constant regardless of m up to the 2nd digit. 

Consequently from this point forward we set at least n=100 and m=200 for our computations. This 
is about the best “n” to speed up for matrixes (for our block of calculation not the individual 
functions\operands). However, we should remember above conclusions and specifically the fact 
that the cost is dependent on n and only accurate up to a few digits. 

Furthermore, a careful examination shows that previous results are slightly affected by for loop 
cost. Part of attached program computes “tic toc” cost as well as pure “for loop” cost. The result is 
displayed in the graph in the next page and it is seen that “for loops” with more than 100 times of 
repetition there is about 740 clocks per step overhead due to the for loops. For a repetition about 10 
times there is about 1200 clocks per step overhead, and finally for a repetition of 1 time the 
overhead is about 5000 clocks with huge variations. In the below figure, 3 averages, each 
averaging 10 runs, for each loop size and their corresponding error bar is shown. For the huge loop 
sizes the error bar (standard deviation) is negligible. 

To modify the previous results for scalars when we have m ! n
2
" 10

2 we have to subtract 740 

from printed clock time. For the vectors when m ! n " 10
2 we have to subtract 

740

n
from the 

results and finally for matrixes when m ! 10
2 we have to subtract 

740

n
2

. This all together can 

justify subtle differences for vector and matrix cost in previous pages while changing n or m. 

Also one might be concerned about the cost of “tic-toc” command. Within two for loops an 
average and standard deviation was computed for “tic toc” time (without command line output). 
The average was done on 10 averages, each averaging 100 times of “tic toc”. The average was 
about 3.5-4.5 clocks and its standard deviation varied between about 5%-50% in different runs. 

31




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Consequently the “tic toc” time has not affected above results. A few consecutive run results in 
shown in the previous page. 

Specific problem parts: 

a) 
b) 
c) 

32




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

MATLAB is a 4th generation language in which you do not need to specify the data type. 
There is a huge ease in MATLAB programming due to this, compared to 3rd generation 
languages like C or Fortran where you have to allocate and specify memory for each data 
type. There are also a lot of drawbacks: one is the time cost, which is higher. But the most 
serious one is the fact that MATLAB is basically an interpreter and it does not work by 
compiling your program in advance. 

MATLAB has tried to decrease these drawbacks with smarter implementations. For 
example while we saw that the cost difference between a scalar and a matrix with huge “n” 
is about 13 times here, it could be about few hundred times in older MATLAB (before 6.5 
version). MATLAB 6.5 included the JIT (Just-in-Time) technique and after that it is much 
less sensitive to vectorization for ordinary programs. 

In 3rd generation languages assignment, memory allocation and memory release are totally 
different steps. Indeed even the assignment can mean either generating a new copy of data 
or just passing its pointer. On the other hand in MATLAB these all might happen at the 
same time and this means that there is a lot of ambiguity in the assignment cost. 
Furthermore smart MATLAB might notice that in y=x, y can be a pointer as long as y or x 
will not change. Here our numbers are updated frequently with rand and new assignments 
and we do not expect the assignment be a pointer one. Also for simplicity before each loop 
we allocate the “a,b,c” with the right size so our assignment is indeed just data copy. Also 
here we do not subtract the assignment cost from evaluation, but some might do that and 
report for example the pure time for subtraction (without the time to copy the results). 

By now we know the time cost of tic-toc and for loops. One approach might be to surround 
a “for loop” with tic-toc and then subtract the additional overhead due to tic-toc and for 
loop. This is probably the best method, but it is not very convenient because we have to run 
the program for different task separately (and at different performance levels). 

Here we adopt another simpler approach. We use time profiler. Time profiler is rather 
accurate, especially if we are concerned about relative time cost. In practice time profiler is 
used to find the bottleneck of programs. To get more accurate results: 

1) We increase the “m, n” so that we get 4 significant digits from time profiler. 
2) We scale the time cost of profiler for each line equally to omit the profiler time 

overhead. The scale value is set by a “tic-toc” time surrounding for loops and its output 
value with and without time profiling. 

3) To have a better idea about statistical significance of results we do this for three times 
for all the processes. 

The next page shows the scalar costs for a single run with time profiler. 3 times of “time 
profiler” run and 3 times of command line run has been used to generate the table shown in 
the next pages. The table shows time normalized by number of elements in seconds unit, 
clock unit and also relative to a=c time cost. Also the standard deviation is calculated in 
clock unit to monitor the significance of results. 

33




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

34




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

Then I have modified the code so that a,b,c are singles instead of default format of double 
(replacing for example ‘a=rand;’ with ‘a=single(rand);’). And finally the same is done for 
matrixes with size a

n!n
. This all together needs 24 runs (6 runs for each pair of 

single\double and scalar\matrix) of the attached “check.m” file with slight modifications. 
The results are stored in C2p29_PSET2_4.xls EXCEL file and the file is attached (similar 
to previous page table). The next table shows the final results. Note that I have chosen 
m=1200 and n=100 for scalars and m=25000 and n=100 for matrixes to get reasonable run 
times for both matrix\scalars. 

35




2.29: Numerical Fluid Mechanics	 Solution of Problem Set 2 

A lot of interesting conclusion can be made from above tables. First the general ones: 

•	 All the operations\functions are faster for doubles with respect to singles, for both 
matrixes and scalars. That’s first because MATLAB is optimized for doubles, and 
secondly probably because some operations are done on doubles and then converted to 
singles. The only exception is a 10% difference for c=a between single and double 
matrixes; and that’s because “c=a” is only a memory copy which is faster for smaller 
data. Consequently the single data does not sound appropriate “FOR MATLAB” 2 and 
we will not discuss it anymore. 

•	 2nd table in the previous page shows the time cost relative to c=a. Note that for double 
scalars this ratio varies from 0.84 to 1.83 (for rand function and c=a^2*a), while for 
double matrix the number varies from 1 to 111.6 (for c=a and c=a^3). This means that 
operational cost is magnified for matrixes; and for scalars the timing is mostly due to 
interpretation and data handling. For example for doubles the {+,-,*} are only about 2% 
faster than {/}, while for matrixes there are about 4.4 times faster. For scalars we do not 
care about operation\function type, but we just have to have smaller number of them. 

•	 We can see that the relative time cost can be quite different for an operation\function 
between scalars and matrixes. This is shown in the table on the previous page. The 
speed up varies from 4.1 to 345 (for c=a.^3 and c=a). Consequently the speed up “13” 
we saw earlier was just an average. 

•	 Probably the most interesting fact is that the operational cost is not solely dependent on 
mathematical complexity. Indeed a few very high-speed transistors makes CPU capable 
of computing any of those operations\functions very quickly for scalars (almost a clock 
when data are in CPU registers and the results will be in registers too). That’s another 
reason why scalar cost are so close together. However, when it comes to huge data (like 
huge matrixes) the parallelism plays the key role for speed up. The parallel calculation 
relies on the CPU arithmetic capacity for each basic operation\function. The arithmetic 
capacity is based on usual 

+,!,", x , x
2
,sin x

needs of a computer. For example typical use of the 
computer needs a lot of { } and they are very fast (there are a lot of 
rooms for those calculations). On the other hand xn where n ! 0.5,2 is not a popular 
function and a typical computer does not have a considerable capacity for that 
operation. As a result, amazingly x3 is slower than any other operations\functions above 
for matrixes (including { x ,sin x, cos x, tan x,e

x
,e

! x
, ln x }). In those situations, we have 

to replace our function with popular ones. Here using x3 = x2 ! x or x3 = x ! x ! x
speeds up 

x
n

our calculation for about 35 times. Consequently we always prefer to 
compute by 	 recursive method for series. Also notice that due to different 

2 Still this CPU manual recommends singles for arithmetic, as much as possible instead of double. So the 
hardware is still better for singles but software preferences pushes for doubles. 

36




2.29: Numerical Fluid Mechanics	 Solution of Problem Set 2 

o Operations { +,!,",÷
{ +,!," } cost the same, while { ÷

o The square operator { x2
than { x ! x

computational capacity for different operations\functions, the speed up due to their 
vectorization differs and varies by changing the size of array3. 

•	 Another surprise: we have two calls to rand and the 2nd one is consistently faster. This 
is because the system still has that function in its memory and when it notices that it is 
going to be called again it keeps that in the memory. Consequently the 2nd run is faster. 
This is also true for other operands\functions, especially when they are similar or they 
need some similar temporary memory or variables. For example {+,!} take the same 
time, but since we first do the summation, the subtraction seems to be faster. This is just 
an artifact and similarly { ! } seems to be faster than both {+,!} , while this is not true 
(in the table we see that { ! } is about 5% faster than {+}). This can be verified by 
changing the order of these operations (as I have done). Also it can be checked that 
c=a.^2.*a and c=a.*a.*a take the same time. 

•	 Some specific results and speed ups are reported here. Note that they can be specific to 
the array size (here 100*100): 

} take the same time for scalars. For huge matrixes 
} cost about 4.4 times. 

} is a special function and is slightly (15%) faster 
}. 

o	 The square root can be evaluated faster by using “sqrt” function. Indeed sqrt 
is at least 2 times faster than equivalent x.^0.5 operation. 

o	 As stated earlier { xn } is a very slow operation if n ! 0.5,2
x
3

. In those cases it 
is better to use { ! } if possible. For example, replacing { } with { x2 ! x } 
can accelerate our computation up to 35 times. 

o	 Apparently c=-a is about 3 times slower than c=b-a. This shows bad 
implementation of MATLAB. Indeed it is even 1.32 more costly than 
c=abs(a). 

o	 Among the trigonometric function, the { sin x } is about 1.21 times faster 
than { cos x } and about 1.67 times faster than { tan x }. Still { sin x } is as 
costly as “sqrt(x)” and both cost about 10 times { +,!," }. 

o	 After { xn }, the functions { ln x
e
x

} is the most costly function. { ln x } costs 
about 1.3 times of { ex }, while { } and { tan x } cost about the same. 

•	 Finally again remember that cost of scalar operations\functions is all about the same in 
MATLAB. Consequently in general, for a faster scalar calculation you have to have 
smaller number of operations\functions (regardless of their type). On the other hand, for 
a faster matrix calculations, the functions\operations should be selected with respect to 
your arithmetic capacity; as a rule of thumb select the popular ones. 

3 Before we reach the arithmetic capacity, the cost per element is almost inversely proportional to the number of 
arrays element and the total time is almost constant. In these regime the whole data is processed in one pass. As 
long as we exceed the capacity we need extra passes to process all the data. 

37




2.29: Numerical Fluid Mechanics	 Solution of Problem Set 2 

Problem 2.5 (15 Points): Computational cost in other language (EXTRA CREDIT) 

Repeat previous problem for a basic language (like C++ or Fortan), but only on the scalars. 

Problem 2.6 (10 Points): Computational cost of determinant evaluation 

a)	 We want to have a recursive formula for computational cost of determinant evaluation 
by expansion of minors. Assume that for a matrix 

S
±
(n), M

!
(n)

with size n the number of 
multiplication and summation\subtraction is . Now compute 
S
±
(n +1), M

!
(n +1)

S
±
(1) = 0, M

!
(1) = 0

S
±
(n), M

!
(n)

by a recursive formula. 
b) Now notice that and try to develop a closed formula (or an order 

estimation) for . 
c) Study the textbook Box 9.1. Ignore the pivoting and compute or estimate the 

computational cost of determinant evaluation by Gauss elimination. 
d) Compare “b” and “c” and discuss. 

Solution: 
a) For a matrix with size “n+1”, we have to compute “n+1” minors, multiply them by 

matrix elements and then sum\subtract “n+1” numbers: 

S
±
(n +1) = (n +1) ! S

±
(n) + n

M
!
(n +1) = (n +1) ! M

!
(n) + n +1

b)	 Note that S
±
(2) = 1, M

!
(2) = 2 . Consequently both S

±
(n), M

!
(n) will grow faster than 

n! . For example: 

M
!
(n) = n! + j

j=n" i+3

j=n

#
i=3

n

$ n % 3

M
!
(6) = 6! + (6 ! 5 ! 4 ! 3+6 ! 5 ! 4 + 6 ! 5 + 6) n " 3

Also by a little extension of summation notation (so that if b < a! 0 = m(i)
i=a

b

" ): 

M
!
(n) = n! + j

j=n" i+3

j=n

#
i=3

n

$ = n! (1+
1

jj=1

j= i

#
i=2

n"1

$ ) n % 3

M
!
(n) = n! (1+

1

i!i=2

n"1

# ) = n!
1

i!i=1

n"1

# n $ 1

remember e
x
series! lim

n"#

1

i!i=1

n$1

% = e $1

lim
n!"

M
#
(n) = n! (e $1)

Also by induction we can prove that: S
±
(n) = n!!1 . 

38




2.29: Numerical Fluid Mechanics	 Solution of Problem Set 2 

c)	 After doing the gauss elimination, we are left with a triangular matrix and the 
determinant of such a matrix is the product of its diagonal elements. So we need “n” 
extra multiplications beside regular Guass elimination. 

M
!
(n) =

n
3

3
+O(n

2
) + n

S
±
(n) =

n
3

3
+O(n)

Please note that: 
i. If B results from A by exchanging two rows or columns, then det(A)=-det(B). 

ii.	 If B results from A by multiplying one row or column with the number c, then 
det(B)=c*det(A) . 

iii.	 If B results from A by adding a multiple of one row to another row, or a multiple of 
one column to another column, then det(A)=det(B). 

Consequently the determinant of the initial matrix and the standard Gaussian eliminated 
one can only differ by a sign. They have the same sign if we have an even number of 
pivoting and opposite sign if we have an odd number of pivoting. 

d)	 The cost (flops: or total number of floating point operations) of determinant evaluation 

by Gaussian elimination is of order . On the other hand, the cost of minors 

expansion is at least of order Consequently the Gaussian elimination is 
strongly preferred and indeed the huge cost of minor expansion renders it as an 
impractical method for large matrixes. 

Problem 2.7 (10 Points): Correct and effective implementation of numerical algorithms 

For any numerical code we are concerned with three issues: 
1.	 Generalization (scope of algorithm) and exceptions 
2.	 Numerical stability 
3.	 Effective and fast implementation 

Here we have a very simple MATLAB code for solving a linear system with Gauss elimination 
and we are interested to investigate these issues for below code: 

function [x]=gauss(A,b) % A: n*n matrix, b: n*1 vector where Ax=b


Ab=[A b];

n=length(A);

for i=1:n-1


2n
3

3

n!e ! 2.7n!. 

39




2.29: Numerical Fluid Mechanics	 Solution of Problem Set 2 

for j=i+1:n

m=-Ab(i,i)/Ab(j,i);

for k=1:n+1


Ab(j,k)=m*Ab(j,k)+Ab(i,k);

end


end

end

x=zeros(n,1);

for i=n:-1:1


sum=Ab(i,n+1);

for j=i+1:n


sum=sum-x(j)*Ab(i,j);

end

x(i)=sum/Ab(i,i);


end


a)	 Is that mathematically correct? Does it work for all matrixes or some matrixes exist 
which it fails to solve. 

b)	 Is that numerically stable? Briefly discuss possible improvements. 
c)	 Is that written effectively? Can we increase its speed? Is that operating with the 

minimum number of operations? More specifically about MATLAB, can the code be 
vectorized? 

d)	 (EXTRA CREDIT: 10 Points) Improve the above code according to your answer in 
previous part (print the code). 

Solution: 

a)	 We can examine the code and we will see that it produces the right solution. However, 
does it work for all matrixes? The answer is “No”. If we look at the code every line 
sounds safe unless these two lines: 

1) m=-Ab(i,i)/Ab(j,i);

2) x(i)=sum/Ab(i,i);


Both lines can be problematic when the denominator is zero. For 1) we do not need a row 
summation (note that above “m” is inverse of standard definition of “m” in Gaussian 
elimination). In 2) A(i,i) is zero, and reminds the case when we have to do a pivoting. This 
codes lacks the pivoting and more importantly lacks to check the inversibility of the matrix; 
which means if it is at all possible to find a nonzero element by pivoting. 

b)	 We have to do the pivoting, when the diagonal element of the active row becomes zero. 
To improve the numerical stability: 

i.	 Do partial pivoting so that the pivot element has the highest absolute value among 
all the below elements in its own row. Even better, do the scaled partial pivoting, so 

40




2.29: Numerical Fluid Mechanics	 Solution of Problem Set 2 

that the absolute value of the pivot element divided by the maximum absolute 
coefficients in its own row is the largest. 

ii. Do full pivoting by exchanging variable orders and rows appropriately. 
iii. Scale the equations or unknowns for equilibration. 

c)	 To increase the speed we have to choose the right schemes. Even after that we have to 
be careful to simplify it as much as possible so our code is as simple as possible. To that 
end when we know the value of something, we should not compute it. In particular if 
A(i,j) is zero then we do not need to compute the “m”. Beside that in the most internal 
loop we are varying “k” from 1 to n+1, while elements before j will remain zero. 

Original Code Modified 
m=-Ab(i,i)/Ab(j,i);
 if Ab(j,i)~=0


for k=1:n+1
 m=-Ab(j,i)/Ab(i,i);

Ab(j,k)=m*Ab(j,k)+Ab(i,k);
 Ab(j,i)=0


end
 for k=i+1:n+1

Ab(j,k)=Ab(j,k)+m*Ab(i,k);


end

end


Also regarding the computer or MATLAB implementation we have to vectorize our code 
as much as possible. In the MATLAB this is equivalent to replace “for” loops with 
equivalent matrix or vector versions. So we can modify the code: 

Original Code Modified (Still have to add pivoting in case 
Ab(i,i) becomes zero) 

Ab=[A b];
 Ab=[A b];

n=length(A);
 n=length(A);

for i=1:n-1
 for i=1:n-1


for j=i+1:n
 for j=i+1:n

m=-Ab(i,i)/Ab(j,i);
 if Ab(j,i)~=0

for k=1:n+1
 m=-Ab(j,i)/Ab(i,i);


Ab(j,k)=m*Ab(j,k)+Ab(i,k);
 Ab(j,i:end)=Ab(j,i:end)+m*Ab(i,i:end);

end
 end


end
 end

end
 end

x=zeros(n,1);
 x=zeros(n,1);

for i=n:-1:1
 for i=n:-1:1


sum=Ab(i,n+1);
 sum=Ab(i,n+1)

for j=i+1:n
 if i<n


sum=sum-Ab(i,i+1:n)*x(i+1:end);

sum=sum-x(j)*Ab(i,j);
 end


end
 x(i)=sum/Ab(i,i)

x(i)=sum/Ab(i,i);
 end


end


d) A modified code with scaled full pivoting is shown below. The related file is attached by 
C2p29_PSET1_7.m name. 

Ab=[A b];

n=length(A);

for i=1:n-1


Scaled_Coeff=Ab(i:n,i)./max(max(Ab(i:n,i:n),[],2),abs(min(Ab(i:n,i:n),[],2)));

[pivot,index]=max(Scaled_Coeff);


41




2.29: Numerical Fluid Mechanics Solution of Problem Set 2 

if pivot==0

error('Matrix is singular');


elseif index~=1

temp =Ab(i ,i:end);

Ab(i ,i:end)=Ab(i-1+index,i:end);

Ab(i-1+index,i:end)=temp;


end

for j=i+1:n


if Ab(j,i)~=0

m=-Ab(j,i)/Ab(i,i);

Ab(j,i:end)=Ab(j,i:end)+m*Ab(i,i:end);


end

end


end

x=zeros(n,1);

for i=n:-1:1


sum=Ab(i,n+1);

if i<n


sum=sum-Ab(i,i+1:n)*x(i+1:end);

end

x(i)=sum/Ab(i,i);


end


42



