
2.29: Numerical Fluid Mechanics	 Problem Set 2 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING


CAMBRIDGE, MASSACHUSETTS 02139


2.29 NUMERICAL FLUID MECHANICS— SPRING 2007 

Problem Set 2 
Posted 02/25/07, due Thursday 4 p.m. 03/8/07, Focused on Lecture 4 to 7 

Problem 2.1 (6% of final grade): Advance your programming skills and review root finding methods 

Review MATLAB help about: 

•	 Function handle 
•	 eval 
•	 nargin 
•	 varargin 
•	 cell: as a data type 
•	 switch: as flow control command 
•	 fprintf 
•	 lower 

Here we want to develop a script as a generalized one dimensional solver. Later you can use it for 
next problems. The function that you write should provide the maximum ease of use, as well as the 
maximum amount of flexibility and adjustment. To that end and to develop a user friendly program: 

•	 The function should have default values for everything so that the user can run it with 
minimum number of inputs. 

•	 The input function (to be solved) should be either a function handle or a string (like 
‘3*x^3-5*x+1’). 

•	 The program should have a nice command line output or plot displaying the gradual 
progress of solution. 

•	 The user should be able to adjust/provide the below options, if necessary. Note that user 
should not need to memorize any order for them and option names should not be case 
sensitive: 

a) Method: Newton, Secant, Bi-Section, False-Position, Modified False-
Position 

b) Initial guess: it can be two numbers for methods like Bi-Section 
c) Derivative of f (note that you can compute the derivative if user 

provides you with a string as solution equation) 
d) Absolute tolerance on x or f 

1




2.29: Numerical Fluid Mechanics	 Problem Set 2 

e) Relative error on x 
f) Maximum number of iterations 
g) Plot 

Here is what function should be like: 

[x_solution, x_iterations, f_iterations] = solver(func_name)

[x_solution, x_iterations, f_iterations] = solver(func_name, x_guess)

[x_solution, x_iterations, f_iterations] = solver(func_name, x_guess, OPTIONS)


A few example calls are shown: 

After writing the program you have to UPLOAD IT ON THE COURSE WEBSITE and PRINT IT 
AS WELL. That’s all you have to do for this problem. This will replace the MATLAB workshop 
assignment about MATLAB programming. 

Problem 2.2 (10 Points): Examine your root finding script 

We are interested to find the roots of: 

f (x) = e
x
sin x + e

! x
cos

2
2x

a)	 How many roots does this equation have? 
b)	 Can you approximate analytically some roots of this equation and characterize their 

type? Discuss. 
c) Find all the roots where . Use above program and examine all the methods for 

any root. For each root use “plotyy” command and plot two things at the same figure: 
- x versus number of iterations 
- Relative error of x (with respect to the most trusted solution) versus number of 

iterations (use logarithmic scale if needed) 

x < 4

d)	 Repeat part c and find the fist two roots where x > 20 . 
x < !20 .e)	 Repeat part c and find the fist two roots where 

2




+,!

!,÷

2.29: Numerical Fluid Mechanics	 Problem Set 2 

Problem 2.3 (65 Points): Textbook problem 

Solve the below problems from “Chapara and Canale” textbook: 

• 5.4, 5.9, 5.15, 5.17 (Use your previous program if you can, then copy and paste the results) 
• 6.1, 6.11, 6.15, 6.16, 6.23 
• EXTRA CREDIT: 6.25 (5 Points) 
• 10.6, 10.9, 10.12, 10.14 

Problem 2.4 (15 Points): Computation cost in MATLAB 

Review MATLAB help about: 

• profile 
• tic 
• toc 

Here we want to investigate the computational cost of basic operations { +,!,",÷ } and some 
functions {	x, x , x , x

2
, x

3
,sin x, cos x, tan x,e

x
,e

! x
, ln x } in the MATLAB program. To that end we 

generate a huge vector/matrix of random numbers and repeat the operation on them as long as to get 
consistent result. Please specify your computer speed, memory and MATLAB version. Try to provide as 
much consistency as possible. Also clear and free your memory as much as possible. In each case examine 
both single and double data type and also report the cost time normalized by your CPU clock time (for 
example for a 2 GHz computer multiply time by 2 !109 1 / sec ). 

of matrix assignment (normalized by the number of elements). 
b) Compare cost of basic operations for scalar. Then compare for the matrixes and also 

element wise . Discuss. 
c) Repeat part b for specified functions. 

a) Report assignment cost (or function y=x). Compare cost of a scalar assignment with cost 

Problem 2.5 (15 Points): Computational cost in other language (EXTRA CREDIT) 

Repeat previous problem for a basic language (like C++ or Fortan), but only on the scalars. 

Problem 2.6 (10 Points): Computational cost of determinant evaluation 

a)	 We want to have a recursive formula for computational cost of determinant evaluation 
by expansion of minors. Assume that for a matrix with size n the number of 

3




2.29: Numerical Fluid Mechanics Problem Set 2 

multiplication and summation\subtraction is S
±
(n), M

!
(n) . Now compute 

S
±
(n +1), M

!
(n +1) by a recursive formula. 

b) Now notice that S
±
(1) = 0, M

!
(1) = 0 and try to develop a closed formula (or an order 

estimation) for S
±
(n), M

!
(n) . 

c) Study the textbook Box 9.1. Ignore the pivoting and compute or estimate the 
computational cost of determinant evaluation by Gauss elimination. 

d) Compare “b” and “c” and discuss. 

Problem 2.7 (10 Points): Correct and effective implementation of numerical algorithms 

For any numerical code we are concerned with three issues: 
1. Generalization (scope of algorithm) and exceptions 
2. Numerical stability 
3. Effective and fast implementation 

Here we have a very simple MATLAB code for solving a linear system with Gauss elimination 
and we are interested to investigate these issues for below code 

function [x]=gauss(A,b) % A: n*n matrix, b: n*1 vector where Ax=b


Ab=[A b];

n=length(A);

for i=1:n-1


for j=i+1:n

m=-Ab(i,i)/Ab(j,i);

for k=1:n+1


Ab(j,k)=m*Ab(j,k)+Ab(i,k);

end


end

end

x=zeros(n,1);

for i=n:-1:1


sum=Ab(i,n+1);

for j=i+1:n


sum=sum-x(j)*Ab(i,j);

end

x(i)=sum/Ab(i,i);


end


a) Is that mathematically correct? Does it work for all matrixes or some matrixes exist 
which it fails to solve. 

b) Is that numerically stable? Briefly discuss possible improvements. 

4




2.29: Numerical Fluid Mechanics	 Problem Set 2 

c)	 Is that written effectively? Can we increase its speed? Is that operating with the 
minimum number of operations? More specifically about MATLAB, can the code be 
vectorized? 

d)	 (EXTRA CREDIT: 10 Points) Improve the above code according to your answer in 
previous part (print the code). 

5



