
9 Fluid dynamics and Rayleigh-Bénard convection 

In these lectures we derive (mostly) the equations of viscous fluid dynamics. 
We then show how they may be generalized to the problem of Rayleigh-
Bénard convection—the problem of a fluid heated from below. Later we show 
how the RB problem itself may be reduced to the famous Lorenz equations. 

The highlights of these lectures are as follows: 

•	 Navier-Stokes equations of fluid dynamics (mass and momentum conser
vation). 

•	 Reynolds number 

•	 Phenomenology of RB convection 

•	 Rayleigh number 

•	 Equations of RB convection 

Thus far we have dealt almost exclusively with the temporal behavior of a 
few variables. 

In these lectures we digress, and discuss the evolution of a continuum. 

9.1 The concept of a continuum 

Real fluids are made of atoms or molecules. 

The mean free path κmfp is the characteristic length scale between molecular

collisions.


Let Lhydro be the characteristic length scale of macroscopic motions.


Fluids may be regarded as continuous fields if


Lhydro � κmpf . 
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When this condition holds, the evolution of the macroscopic field may be 
described by continuum mechanics, i.e., partial differential equations. 

To make this idea clearer, consider a thought experiment in which we measure 
the density of a fluid over a length scale κ using some particularly sensitive 
device. We then move the device in the x-direction over a distance of roughly 
10κ. 

Suppose κ � L1 � κmpf . Then we expect the density to vary greatly in space 
as in Figure (a) below: 
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x/L1 x/L2 x/Lhydro
(a) (b) (c) 

We expect that the fluctuations in (a) should decrease as κ increases. (Statistics 

tells us that these fluctuations should decrease like 1/N 1/2, where N � ε3 is the average number of 

molecules in a box of size ε. ) 

On the other hand, if κ � Lhydro (see (c)), variations in density should reflect 
density changes due to macroscopic motions (e.g., a rising hot plume), not 
merely statistical fluctuations. 

Our assumption of a continuum implies that there is an intermediate scale, 
κ � L2, over which fluctuations are small. Thus the continuum hypothesis 
implies a separation of scales between the molecular scale, L1 � κmfp, and the 
hydrodynamic scale, Lhydro. 

Thus, rather than dealing with the motion �1023 molecules and therefore 
�6 × 1023 ordinary differential equations of motion (3 equations each for 
position and momentum), we model the fluid as a continuum. 
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The motion of the continuum is expressed by partial differential equations for 
evolution of conserved quantities. We begin with the conservation of mass. 

9.2 Mass conservation 

Let 
δ = density 

� 

of a macroscopic fluid particle 
ψu = velocity 

Consider a volume V of fluid, fixed in space: 

V 

dS 

u 

dψs is an element of the surface, dψs is its area, and it points in the outward | |
normal direction. 

ψu is the velocity. 

The outward mass flux through the element dψs is 

δψu dψs. · 
Therefore, 

rate of mass loss from V = δψu dψs.· 
s 

The total mass in V is 

δdv 
V 

Thus the rate of mass loss may be rewritten as 
d 
� � 

ωδ 
� 

− 
V 
δdv = − 

V 
dv = + 

s 
δψu · dψs 

dt ωt 
Shrinking the volume, we eliminate the integrals and obtain 

ωδ 
⎡� � 

= − lim δψu dψs/V . 
ωt V �0 

· 
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Recall that the RHS above is the definition of the divergence operator. We 
thus obtain 

ωδ 
= −ψ u)

ωt 
� · (δψ

We see that to conserve mass, a net divergence creates a corresponding change 
in density. 

For incompressible fluids, 
δ � constant. 

(This result is not an assumption, but instead derives from the assumption that the Mach number, 

the square of the ratio of the fluid velocity to the speed of sound, is much less than unity.) 

Then 
ψ� · ψu = 0. 

which is the equation of continuity for incompressible fluids. 

9.3 Momentum conservation 

We seek an expression of Newton’s second law: 

(momentum of fluid particle) = force acting on fluid particle (22)
dt

9.3.1 Substantial derivative 

We first focus on the LHS of (22). 

There is a conceptual problem: d (particle momentum) cannot be given at a 
dt 

fixed location, because 

•	 the momentum field itself changes with respect to time; and 

•	 fluid particle can change its momentum by flowing to a place where the 
velocity is different. 
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To better understand this problem physically, consider how a scalar property— 
the temperature T —of a fluid particle changes in time. 

A small change νT is produced by a small changes νt in time and νx, νy, νz 
in the position of the fluid particle: 

ωT ωT ωT ωT 
νT = νt + νx + νy + νz 

ωt ωx ωy ωz 

Divide by νt to obtain the rate of change: 

νT ωT ωT νx ωT νy ωT νz 
= + + + 

νt ωt ωx νt ωy νt ωz νt 

In the limit νt ∗ 0, 

νx νy νz 
νt 

∗ ux, 
νt 

∗ uy, 
νt 

∗ uz 

The rate of change of T of a fluid particle is then 

DT ωT ωT ωT ωT 
= + ux + uy + uz

Dt ωt ωx ωy ωz 

= 
ωT 

+ ψu ψ
ωt 

· �T 

where 
D ω 

= + ψu ψ
Dt ωt 

· � 

is the substantial derivative or convective derivative operator. 

Thus we see that the temperature of a fluid particle can change because 

• the temperature field changes “in place” (via ω/ωt); and 

• the particle can flow to a position where the temperature is different (via 
ψψu �).· 

Note that the same analysis applies to vector fields such as the velocity ψu: 

Dψu ωψu ψ
Dt 

= 
ωt 

+ (ψu · �)ψu 
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Therefore the velocity ψu enters Dψu/Dt in 2 ways: 

•	ψu changes (in place) as the fluid moves (ω/ωt)


ψ
• ψu governs how fast that change occurs (ψu · �). 

This dual role of velocity is the essential nonlinearity of fluid dynamics and 
thus the cause of turbulent instabilities. 

We can now express the rate-of-change of momentum per unit volume (i.e., 
LHS of (22)): 

δ 
Dψu 

= δ
ωψu 

+ δ(ψu ψ u 
Dt ωt 

· �)ψ

δ is outside the differential because a fluid particle does not lose mass. Density changes thus mean 

volume changes, which are irrelevant to the momentum change of that particle. Above we have 

written the (rate of change of momentum) per unit volume, which need not be equal to the rate of 

change of (momentum per unit volume). 

9.3.2 Forces on fluid particle 

To obtain the full dynamical equation, we need the RHS of 

Dψu 
δ = Force acting on fluid particle / unit volume. 

Dt 

These forces are 

• body force (i.e., gravity) 

• pressure 

• viscous friction (internal stresses) 

Body force. We represent the externally imposed body force by Fψ . 
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Pressure. Fluid flows from high to low pressure. Thus


pressure force ωp 
unit volume 

= −
ωx 

in 1-D 

= −ψ in 3-D �p 

Viscous friction. Viscous stresses are the source of dissipation in fluids. 
They resist relative movements between fluid particles. 

For example, the shear flow 

y 

x 

u 

u 

is resisted more by high viscosity fluids than low viscosity fluids. 

This resistance derives from molecular motions. (A nice analog is Reif’s picture of 

two mail trains, one initially fast and the other initially slow, that trade mailbags.) 

In the simple shear flow above, there is a flux of x-momentum in the y-
direction. 

In Newtonian fluids, this flux, which we call Pxy, is proportional to the gra
dient: 

ωux
Pxy = −σ 

ωy 

where σ is called the dynamic viscosity. σ has units of mass/(length × time). 

The shear stress can occur at any orientation. Analogous to the 1-D Newto

nian condition above, we define the viscous momentum flux 

ωui
Pij = −σ

ωxj 
. 
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The conservation of momentum requires that the divergence of the momen
tum flux Pij be balanced by a change in the momentum of a fluid particle. 
Loosely stated, 

ω(δui)�
�

� = −ψ = − 
� ω

Pij = σ 
� ω2 

ui
ωt �viscous 

� · Pij 

j 
ωxj j 

ωx2 
j 

We thus find that 
viscous force 

= σ� 2ψu. 
unit volume 

(A careful derivation requires consideration of the tensorial relationship between viscous stress and 

the rate of deformation.) 

Newton’s second law then gives the Navier-Stokes equation for incompressible 
fluids: 

δ
ωψu 

+ δ(ψu ψ u = �p + σ� 2ψu + Fψ�)ψ −ψ
ωt 

· 
� ⎜� � �⎜�� 

� ⎜� � 
stresses on fluid element per unit vol body force per unit vol 

(mass per unit vol)×acceleration 

Incompressibility arose from our negelect of compressive forces on fluid ele
ments. 

9.4 Nondimensionalization of Navier-Stokes equations 

Define the characteristic length scale L and velocity scale U . We obtain the 
non-dimensional quantities 

x∗ = 
x
, y∗ = 

y
, z∗ = 

z 
L L L 

ψu∗ = 
ψu
, t∗ = t

U
, p∗ = 

p 
U L δU2 

The dynamical equations (without body force) become 

ψ�∗ · ψu∗ = 0 

ωψu 1∗ 
+ (ψu∗ ψ ∗)ψu∗ = −ψ ∗p∗ + ∗2ψu∗ 

ωt∗ 
· � �

Re
�
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where

δUL 

Re = Reynolds number = 
σ 

is the dimensionless control parameter. 

The Reynolds number quantifies the relative importance of the nonlinear term 
to the viscous term. To see why, note the following dimensional quantities: 

δU2 

δψu ψ u nonlinearity | · �ψ | � 
L 

σU |σ� 2ψu| � 
L2 

dissipation 

Their ratio is 
δψu ψ u δUL | · �ψ | 

= Reynolds number |σ�2ψu| � 
σ 

High Re is associated with turbulence (i.e., nonlinearities). Low Re is asso

ciated with laminar or creeping flows dominated by viscous friction. 

Note that as long as Re remains the same, the dimensional parameters like 
U and L can change but the the flow (i.e., the equation it solves) does not. 
This is dynamical similarity. 

An example is running vs. swimming: 
�
σ 
�
 �

σ 
�

= 0.15 cm2/sec and = 0.01 cm2/sec
δ
 δ
air water 

On the other hand, comparing 100 meter world records, 

104 cm 
Urun � 

10 sec 
= 103 cm/sec 

104 cm 
Uswim � 

55 sec 
� 2 × 102 cm/sec 

Taking L � 100 cm, 

Re(swim) � 2 × 104 and Re(run) � 6 × 103 
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Thus for both swimming and running, Re � 104 , well into the turbulent 
regime. Surprisingly, despite the slower speed of swimming, Re(swim) is 
somewhat greater. 

Another example: bacteria swimming in water is roughly like us swimming in 
molasses, since the the small size and slow speed of bacteria would correspond 
to a larger and faster body in a more viscous fluid. 

9.5 Rayleigh-Bénard convection 

In a thermally expansive fluid, hot fluid rises. 

R-B convection concerns the study of the instabilities caused by rising hot 
fluid and falling cold fluid. 

Typically,, fluid is confined between two horizontal, heat-conducting plates: 

T=T0 (cold) 

g d fluid 

T=T0 + δ T (hot) T=T0 + δ T 

pure 
conduction 

T0 

temperature 

In the absence of convection—the transport of hot fluid up and cold fluid 
down—the temperature gradient is constant. 

Two cases of interest: 

•	 νT small: no convective motion, due to stabilizing effects of viscous 
friction. 

•	 νT large: convective motion occurs. 
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How large is a “large νT ” ? We seek a non-dimensional formulation. 

The following fluid properties are important: 

• viscosity 

• density 

• thermal expansivity 

• thermal diffusivity (heat conductivity) 

Convection is also determined by 

• d, the box size 

• νT (of course) 

Consider a small displacement of a cold blob downwards and a hot blob 
upwards: 

T=T0 

T=T0 + δ T 

Left undisturbed, buoyancy forces would allow the hot blob to continue rising 
and cold blob to continue falling. 

There are however damping (dissipation) mechanisms: 

diffusion of heat • 

viscous friction • 
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Let DT = thermal diffusivity, which has units 

length2 

[DT ] = 
time 

The temperature difference between the two blobs can therefore be main

tained at a characteristic time scale 

d2 

φth � 
DT 

We also seek a characteristic time scale for buoyant displacement over the 
length scale d. 

Let 

δ0 = mean density 

Γδ = −�δ0ΓT, � = expansion coefficient 

Setting ΓT = νT , 

buoyancy force density = ψgΓδ| | 
= g�δ0 νT. 

Note units: 
mass 

[g�δ0νT ] = 
(length)2(time)2 

The buoyancy force is resisted by viscous friction between the two blobs 
separated by � d. 

The viscous friction between the two blobs diminishes like 1/d (since viscous 
stresses ≥ velocity gradients). The rescaled viscosity has units 

�σ � mass 
= 

(length)2(time) 

Dividing the rescaled viscosity by the buoyancy force, we obtain the charac

teristic time φm for convective motion: 

d 

σ/d σ 
= .φm � 

buoyancy force g�δ0 d νT 
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Convection (sustained motion) occurs if 

time for motion < diffusion time for temperature difference 

φm < φth 

Thus convection requires 
φth 

> constant 
φm 

or 
δ0g�d

3 

νT ∈ Ra > constant 
σDT 

Ra is the Rayleigh number. A detailed stability calculation reveals that the 
critical constant is 1708. 

Our derivation of the Rayleigh number shows that the convective instability 
is favored by 

• large νT , �, d, δ0. 

• small σ, DT . 

In other words, convection occurs when the buoyancy force δ0g�d
3 νT exceeds 

the dissipative effects of viscous drag and heat diffusion. 

Note that box height enters Ra as d3 . This means that small increases in box 
size can have a dramatic effect on Ra. 

9.6 Rayleigh-Bénard equations 

9.6.1 Dimensional form 

We employ the Boussinesq approximation: density perturbations affect only 
the gravitational force. 

The momentum equation is therefore the Navier-Stokes equation augmented 
by the buoyancy force: 

ωψu 1 
+ ψu ψ ψ 2ψ g�(T − T0)

ωt 
· �ψu = −

δ0 
�p + �� u − ψ
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Here we have written the kinematic viscosity 

� = σ/δ0 

The mass conservation equation is again 

ψ u = 0.� · ψ

We now additionally require an equation for the convection and diffusion of 
heat: 

ωT 
ωt 

+ (ψu · �)T = DT � 2T. 

9.6.2 Dimensionless equations 

The equations are nondimensionalized using 

length scale = d 

time scale = d2/DT 

temperature scale = νT/Ra. 

An additional dimensionless parameter arises: 

Pr = Prandtl number = �/DT , 

which is like the ratio of momentum diffusion to thermal diffusion. 

We shall employ the dimensionless temperature fluctuation 

β = deviation of dimensionless T from the simple conductive gradient 

The mass conservation equation is 

ψ u = 0 � · ψ

Momentum conservation yields (ẑ is a unit upward normal) 

1 
⎡
ωψu 

� 

+ ψu ψ u = −ψ z + � 2ψu 
Pr ωt 

· �ψ �p + βˆ
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The heat equation becomes 

ωβ ψ	 2β 
ωt 

+ ψu · �β = Ra(ψu · ẑ) + � 

Note that there are two nonlinear terms: 

ψ•	ψu · �ψu


ψ
• ψu · �β 

Their relative importance depends on Pr: 

small Pr ∞ ψu ψ u dominates. Instabilities are “hydrodynamic.” •	 · �ψ


ψ
• large Pr ∞ ψu · �β dominates. Instabilities are thermally induced. 

9.6.3 Bifurcation diagram 

For Ra < Rac, there is no convection. 

For Ra > Rac, but not too large, a regular structure of convection “rolls” 
forms, with hot fluid rising and cold fluid falling: 

T = T0 

d 

T = T0 + δ d 

Now imagine placing a probe that measures the vertical component v of 
velocity, somewhere in the box midway between the top and bottom. A plot 
of v(Ra) looks like 
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v 

0 conduction 

rest 

v+ 

v− 

conduction 

(unstable) 

Rac 

convection (stable) 

Ra 

Such a plot is called a bifurcation diagram. Here the stable states are bold 
and the unstable states are dashed. 

Note that we cannot know in advance whether the velocity will be up or 
down. This is called symmetry breaking. 

9.6.4 Pattern formation 

Rayleigh-Bénard convection makes fascinating patterns. Some examples: 

•	 Figures 22.3–8, Tritton. 

•	 Plate 1, Schuster, showing quasiperiodic regime. (The 40 sec period is 
not precise: note details in upper right are not quite periodic.) 

•	 Plumes: Figure 22.12, Tritton 

•	 Plumes in the wind: Zocchi, Moses, and Libchaber (1990) 

•	 Collective plumes: Zhang et al (1997). 

9.6.5 Convection in the Earth 

The Earth’s radius is about 6378 km. It is layered, with the main divisions 
being the inner core, outer core, mantle, and crust. 
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The Earth’s crust—the outermost layer—is about 30 km thick.


The mantle ranges from about 30–2900 km.


The mantle is widely thought to be in a state of thermal convection. The

source of heat is thought to be the radioactive decay of isotopes of uranium,

thorium, and potassium. Another heat source is related to the heat deriv

ing from the gravitational energy dissipated by the formation of the Earth

roughly 4.5 Ga.


At long time scales mantle rock is thought to flow like a fluid. However its

effective viscosity is the subject of much debate.


One might naively think that the huge viscosity would make the Rayleigh

number quite small. Recall, however, that Ra scales like d3, where d is the

“box size”. For the mantle, d is nearly 3000 km!!!


Consequently Ra is probably quite high. Current estimates suggest that 

3 × 106 � Ramantle � 109 

which corresponds to roughly 

103 × Rac � Ramantle � 106Rac 

The uncertainty derives principally from the viscosity, and its presumed vari

ation by a factor of about 300 with depth. 

Some pictures illustrate these ideas: 

•	 Science cover, 26 May 1989 

•	 van der Hilst seismic tomography, showing cold slab descending toward 
the core-mantle boundary. 

•	 Gurnis (1988) simulation/cartoon showing breakup of continents. 

•	 Zhang and Libchaber (2000) showing floater-plates. 

Thermal convection is the “engine” that drives plate tectonics and volcanism. 
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It turns out that volcanism is, over the long-term, responsible for the CO2 

in the atmosphere, and thus the source of carbon that is fixed by plants. 
(Weathering reactions remove C from the atmosphere.) 

Thus in some sense thermal convection may be said to also sustain life. 

That is, without convection, there probably would be no CO2 in the atmo
sphere, and therefore we wouldn’t be around to discuss it... 
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