
7 Fourier transforms 

Except in special, idealized cases (such as the linear pendulum), the precise 
oscillatory nature of an observed time series x(t) may not be identified from 
x(t) alone. 

We may ask 

• How well-defined is the the dominant frequency of oscillation? 

• How many frequencies of oscillation are present? 

• What are the relative contributions of all frequencies? 

The analytic tool for answering these and myriad related questions is the 
Fourier transform. 

7.1 Continuous Fourier transform 

We first state the Fourier transform for functions that are continuous with 
time. 

The Fourier transform of some function f(t) is 

1 
� � 

F (γ) = f(t)e−iσtdt�
2α −� 

Similarly, the inverse Fourier transform is


1 
� � 

iσtdγ. f(t) = F (γ)e�
2α −� 

That the second relation is the inverse of the first may be proven, but we 
save that calculation for the discrete transform, below. 
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7.2 Discrete Fourier transform 

We are interested in the analysis of experimental (or numerical) data, which 
is almost always discrete. Thus we specialize to discrete Fourier transforms. 

In modern data, one almost always observes a discretized signal 

xj, j = {0, 1, 2, . . . , n − 1}


We take the sampling interval—the time between samples—to be Γt. Then


xj = x(jΓt).


The discretization process is pictured as 

t 

x 

x(t) 

Δ t 

j−1 j j+1 

A practical question concerns the choice of Γt. To choose it, we must know 
the highest frequency, fmax, contained in x(t). 

The shortest period of oscillation is 

Tmin = 1/fmax 

Pictorially, 

x 

t 

Tmin 

We require at least two samples per period. Therefore


Tmin 1 
= .Γt ∼ 

2 2fmax 
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The discrete Fourier transform (DFT) of a time series xj, j = 0, 1, . . . , n − 1 
is 

n−1 � �
1 � 2αjk 

x̂k = �
n

xj exp −i
n 

k = 0, 1, . . . , n − 1 
j=0 

To gain some intuitive understanding, consider the range of the exponential 
multiplier. 

•	 k = 0 ∞ exp(−i2αjk/n) = 1. Then


1 �

x̂0 = xj�

n 
j 

Thus x̂0 is, within a factor of 1/
�
n, equal to the mean of the xj’s. 

This is the “DC” component of the transform. 

Question: Suppose a seismometer measures ground motion. What would 
x̂0 = 0 mean? 

• k = n/2 ∞ exp(−i2αjk/n) = exp(−iαj). Then 

x̂n/2 = 
1 �
n 

� 

j 

xj(−1)j 

= x0 − x1 + x2 − x3 . . . 

Frequency index n/2 is clearly the highest accessible frequency. 

(19) 

(20) 

• The frequency indices k = 0, 1, . . . , n/2 correspond to frequencies 

fk = k/tmax, 

i.e., k oscillations per tmax, the period of observation. 
Index k = n/2 then corresponds to 

�n�
� 

1 
� 

1 
fmax =	 = 

2 nΓt 2Γt 

But if n/2 is the highest frequency that the signal can carry, what is the 
significance of x̂k for k > n/2? 
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For real xj, frequency indicies k > n/2 are redundant, being related by 

x̂k = x̂�n−k 

where z� is the complex conjugate of z (i.e., if z = a + ib, z� = a − ib). 

We derive this relation as follows. From the definition of the DFT, we have 

x̂�n−k = 
1 �
n 

n−1 � 

j=0 

xj exp 

� 

+i 
2αj(n − k) 

n 

� 

= 
1 �
n 

n−1 � 

j=0 

xj exp (i2αj) 
� ⎜� � 

1 

exp 

�−i2αjk 
n 

� 

= 
1 �
n 

n−1 � 
xj exp 

�−i2αjk 
n 

� 

j=0 

= x̂k 

where the + in the first equation derives from the complex conjugation, and 
the last line again employs the definition of the DFT. 

Note that we also have the relation 

x̂� = x̂� = x̂k.−k n−k 

The frequency indicies k > n/2 are therefore sometimes referred to as negative 
frequencies 

7.3 Inverse DFT 

The inverse DFT is given by 

n−1 � �
1 � 2αjk 

xj = �
n

x̂k exp +i
n 

j = 0, 1, . . . , n − 1 
k=0 
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We proceed to demonstrate this inverse relation. We begin by substituting 
the DFT for x̂k, using dummy variable j ∗: 

⎭ ⎣ 
n−1 n−1 � � � �

1 � 1 � 2αj ∗k 2αkj 
xj = �

n 
�
n 
� xj� exp −i ⎤ exp +i 

n n 
k=0 j�=0 

n−1 n−1 � � 

=
1 � 

xj� 

� 
exp −i 2αk(j

∗ − j)

n n


j�=0 k=0 

n−1 �
1 � n, j ∗ = j 

= xj� 
n 

j�=0 

× 
0, j ∗ =� j 

1 
= (nxj) 

n 

= xj 

The third relation derives from the fact that the previous 
� 

k amounts to a 
sum over the unit circle in the complex plane, except when j ∗ = j. The sum 
over the circle always sums to zero. For example, consider j ∗ − j = 1, n = 4. 
The elements of the sum are then just the four points on the unit circle that 
intersect the real and imaginary axes, i.e., the 

n−1 � �
� 2αk(j

exp −i 
∗ − j)

= e 0 + e−i�/2 + e−i� + e−i3�/2 

n 
k=0 

= 1 + i − 1 − i 

= 0. 

Finally, note that the DFT relations imply that xj is periodic in n, so that 
xj+n = xj. This means that a finite time series is treated precisely as if it 
were recurring, as illustrated below: 

x(t) 

maxttmax 2 
t 

maxt− 0 
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7.4	 Autocorrelations, power spectra, and the Wiener-Khintchine 
theorem 

Assume that the time series xj has zero mean and that it is periodic, i.e., 
xj+n = xj. 

Define the autocorrelation function η: 
n−1 

1 � 
ηm = xjxj+m 

n 
j=0 

where 
ηm = η(mΓt) 

The autocorrelation function measures the degree to which a signal resembles 
itself over time. Thus it measures the predictability of the future from the 
past. Some intuition may be gained as follows: 

•	 Consider, for example, m = 0. Then 
n−1 

η0 =
1 � 

x 2 
j , n 

j=0 

which is the mean squared value of xj (i.e., its variance). 

•	 Alternatively, if mΓt is much less than the dominant period of the data, 
ηm should not be too much less than η0. 

•	 Last, if mΓt is much greater than the dominant period of the data, |ηm|
is relatively small. 

A typical ηm looks like 

Ψm 

m 
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Define the power spectrum to be the magnitude squared of the Fourier 
transform; i.e., 

n−1 2 

|
x̂k
2 |
 =


1

n


xj exp −i
2αjk

n


.

j=0 

We proceed to show that for real time series xj, 

autocorrelation ≥ Fourier transform of the power spectrum. 

This is called the the Wiener-Khintchine theorem. We proceed to derive this 
relation. 

1−n� 

Substitute the inverse DFT for xj in ηm: 
�� �


n−1 n−1 

ηm = x̂k exp i�
n 

∗1
 1
 2αkj
 1
 2αk
(j + m)

x̂k� exp i�

n
n
 n
 n

j=0 k=0 k�=0 

1 1 1�− − −n n n� 

j=0�k=0 k =0 
n n 

� 

i

∗ ∗1


n2 

2αmk
 2αj(k + k
)

x̂kx̂k� exp i
=
 exp


⎜�

= n, k∗ = n − k 
= 0, k∗ =� n − k 

1−n �1
 2αm(n − k)

= x̂kx̂n−k exp i 

n n

k=0 

1−n�1
 2αmk

x̂kx̂k

� exp −i=

n
 n


k=0 

In the last line we have used the redundancy relation x̂�k = x̂n−k. 

We thus find that 

ηm ≥ Fourier transform of the power spectrum x̂kx̂
� = |x̂k| 2 
k 

Of course the inverse relation holds also. 

For real time series {xj}, the power spectrum contains redundant information 
that is similar to that of the Fourier transform but more severe: 

|x̂k| 2 = x̂kx̂
�
k = x̂kx̂n−k = x̂�n−kx̂n−k = |x̂n−k| 2 . 
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This redundancy results from the fact that neither the autorcorrelation nor 
the power spectra contain information on any “phase lags” in either xj or its 
individual frequency components. 

Thus while the DFT of an n-point time series results in n independent quan
tities (2 ×n/2 complex numbers), the power spectrum yields only n/2 inde

pendent quantities. 

One may therefore show that there are an infinite number of time series that 
have the same power spectrum, but that each time series uniquely defines its 
Fourier transform, and vice-versa. 

Consequently a time series cannot be reconstructed from its power spectrum 
or autocorrelation function. 

7.5 Power spectrum of a periodic signal 

Consider a periodic signal 

2α 
x(t) = x(t + T ) = x t + 

γ 

Consider the extreme case where the period T is equal to the duration of the 
signal: 

T = tmax = n�t 
The Fourier components are separated by 

1 
Γf = 

tmax 

i.e. at frequencies 
0, 1/T, 2/T, . . . , (n − 1)/T. 

7.5.1 Sinusoidal signal 

In the simplest case, x(t) is a sine or cosine, i.e., 
� 

2αt 
� 

x(t) = sin . 
tmax 
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What is the Fourier tranform? Pictorially, we expect


x(t) 

tmax 
t 

xk 
2 

Δk f = k/T1/T 

We proceed to calculate the power spectrum analytically, beginning with the 
DFT: 

1 �
�−i2αjk 

� 

x̂k = xj exp�
n n 

j 

1 �
�

2αjΓt
� �−i2αjk 

� 

= sin exp�
n tmax n 

j 

1 �
⎡ �

i2αjΓt
� �−i2αjΓt�� �−i2αjk 

� 

=
2i
�
n 

exp 
tmax 

− exp 
tmax 

exp 
n 

j 

1 �
⎡ � � 

Γt k 
�� � � 

Γt k 
��� 

=
2i
�
n 

exp i2αj 
tmax 

− 
n 

− exp −i2αj 
tmax 

+ 
n 

j 
�
n ±nΓt 

= when k =± 
2i tmax 

Thus 
n |x̂j| 2 = 
4 

for k = ±1. 

7.5.2 Non-sinusoidal signal 

Consider now a non-sinusoidal yet periodic signal, e.g., a relaxation oscillation 
as obtained from the van der Pol system. 
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The non-sinusoidal character of the relaxation oscillation implies that it con
tains higher-order harmonics, i.e., integer multiples of the fundamental 
frequency 1/T . Thus, pictorially, we expect 

xk 
2 

Δk f = k/T1/T 

x(t) 

tmax 
t 

2/T 
3/T 

harmonics 

fundamental 

Now suppose tmax = pT , where p is an integer. The non-zero components of 
the power spectrum must still be at frequencies 

1/T, 2/T, . . . . 

But since 
1 1 

Γf = = 
tmax pT 

the frequency resolution is p times greater. Contributions to the power spec
trum would remain at integer multiples of the frequency 1/T , but spaced p 
samples apart on the frequency axis. 

7.5.3 tmax/T = integer 

If tmax/T is not an integer, the (effectively periodic) signal looks like 

x(t) 

ttmax 
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We proceed to calculate the power spectrum of such a signal. Assume the 
sinusoidal function 

2αt 
x(t) = exp i 

T 

which yields 
2αjΓt 

xj = exp i 
T 

The DFT is 

n−1 � � � �
1 � 2αjΓt 2αjk 

x̂k = �
n 

exp i
T 

exp −i
n 

j=0 

Set 
Γt k 

θk = . 
T 

− 
n 

Then 
n−1

1 � 
x̂k = exp (i2αθkj)�

n 
j=0 

Recall the identity 
n−1 n� 

j x − 1 
x = 

x − 1 
j=0 

Then 

x̂k = 
1 exp(i2αθkn) − 1 �
n exp(i2αθk) − 1 

The power spectrum is 

1 
�

1 − cos(2αθkn)
� 

|x̂k| 2 = x̂kx̂k
� = 

n 1 − cos(2αθk) 

1 
�

sin2(αθkn)
� 

= 
n sin2(αθk) 

Note that 
nΓt tmax

nθk = − k = − k 
T T 

is the difference between a DFT index k and the “real” non-integral frequency 
index tmax/T . 
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Assume that n is large and k is close to that “real” frequency index such that


nΓt 
nθk = − k � n. 

T 

Consequently θk � 1, so we may also assume 

αθk � 1. 

Then 

1 sin2(αθkn) |x̂k| 2 ◦ 
n (αθk)2 

sin2(αθkn) 
= n 

(αθkn)2 

sin2 z 
2

≥ 
z

where 
nΓt tmax 

z = nαθk = α − k = α − k 
T T 

Thus |x̂k|2 is no longer a simple spike. Instead, as a function of z = nαθk it 
appears as 

sin 2z / z2 

1 

πφkπ 2π 3π−3π −2π −π 0 z=n 

The plot gives the kth component of the power spectrum of ei2�t/T as a 
function of α(tmax/T − k). 

To interpret the plot, let k0 be the integer closest to tmax/T . There are then 
two extreme cases: 
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xk 
2 

kk0 
0 z 

sin2z/z 

1.	 tmax is an integral multiple of T:

tmax
− k0 = 0. 
T 

The spectrum is perfectly sharp: 

2	 sin2z/zxk 

k0 k	 0 z 

2.	 tmax/T falls midway between two frequencies. Then


tmax 1

= .− k0

T 2

The spectrum is smeared:


The smear decays like

1 1


(k − tmax/T )2 
� 
k2 

7.5.4 Conclusion 

The power spectrum of a periodic signal of period T is composed of: 

1. a peak at the frequency 1/T 

2. a smear (sidelobes) near 1/T 

3. possibly harmonics (integer multiples) of 1/T 

4. smears near the harmonics. 
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7.6 Quasiperiodic signals 

Let y be a function of r independent variables: 

y = y(t1, t2, . . . , tr). 

y is periodic, of period 2α in each argument, if 

y(t1, t2, . . . , tj + 2α, . . . , tr) = y(t1, t2, . . . , tj, . . . , tr), j = 1, . . . , r 

y is called quasiperiodic if each tj varies with time at a different rate (i.e., 
different “clocks”). We have then 

tj = γjt, j = 1, . . . , r. 

The quasiperiodic function y has r fundamental frequencies: 
γj

fj = 
2α 

and r periods 
1 2α 

Tj = = . 
fj γj 

Example: The astronomical position of a point on Earth’s surface changes 
due to 

•	 rotation of Earth about axis (T1 = 24 hours).


revolution of Earth around sun (T2 365 days).
•	 ◦ 

•	 we ignore precession and other orbital changes. 

Mathematically, we can conceive of such a function on a 2-D torus T 2, existing 
in a 3-D space. 
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Here we think of a disk spinning with period T1 while it revolves along the 
circular path with period T2. 

Such behavior can be conceived as a trajectory on the surface of a doughnut 
or inner tube, or a torus T2 in R3 . 

f1 

f2 

What is the power spectrum of a quasiperiodic signal x(t)? There are two 
possibilities: 

1. The quasiperiodic signal is a linear combination of independent periodic 
functions. For example: 

r 

x(t) = xi(γit). 
i=1 

Because the Fourier transform is a linear transformation, the power spec
trum of x(t) is a set of peaks at frequencies 

f1 = γ1/2α, f2 = γ2/2α, . . . 

and their harmonics 

m1f1, m2f2, . . . (m1,m2, . . . positive integers). 

2. The quasiperiodic signal x(t) depends nonlinearly on periodic functions. 
For example,


1 1

x(t) = sin(2αf1t) sin(2αf2t) = 

2 
cos(|f1 − f2|2αt) − 

2 
cos(|f1 + f2|2αt). 

The fundamental frequencies are 

|f1 − f2| and |f1 + f2|. 
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The harmonics are 

m1|f1 −f2| and m2|f1 +f2|, m1,m2 positive integers. (21) 

The nonlinear case requires more attention. In general, if x(t) depends non
linearly on r periodic functions, then the harmonics are 

|m1f1 + m2f2 + . . . + mrfr|, mi arbitrary integers. 

(This is the most general case, for which equation (21) is a specific example. The expression above 

derives from m1f1 ± m2f2 ± . . ., with mi positive) 

We proceed to specialize to r = 2 frequencies, and forget about finite Γf . 

Each nonzero component of the spectrum of x(γ1t, γ2t) is a peak at 

f = |m1f1 + m2f2|, m1,m2 integers . 

There are two cases: 

1. f1/f2 rational ∞ sparse spectrum. 

2. f1/f2 irrational ∞ dense spectrum. 

To understand this, rewrite f as 

f = f2 .

f1 

m1 + m2
f2 

In the rational case, 
f1 

f2 
= 

integer 
integer 

. 

Then 

+ integer 

Thus the peaks of the spectrum must separated (i.e., sparse).


Alternatively, if f1/f2 is irrational, then m1 and m2 may always be chosen so


f1 integer
 1

integer multiple of
m1 + m2 =
 =
 .


f2 f2 f2 

that

f1 

m1 + m2
f2 

is not similarly restricted.
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These distinctions have further implications. 

In the rational case, 

f1 n1 
= , n1, n2 integers. 

f2 n2 

Since 
n1 n2 

= 
f1 f2 

the quasiperiodic function is periodic with period 

T = n1T1 = n2T2. 

All spectral peaks must then be harmonics of the fundamental frequency 

1 f1 f2
f0 = = = . 

T n1 n2 

Thus the rational quasiperiodic case is in fact periodic, and some writers 
restrict quasiperiodicity to the irrational case. 

Note further that, in the irrational case, the signal never exactly repeats 
itself. 

One may consider, as an example, the case of a child walking on a sidewalk, 
attempting with uniform steps to never step on a crack (and breaking his 
mother’s back...). 

Then if x(t) were the distance from the closest crack at each step, it would 
only be possible to avoid stepping on a crack if the ratio 

step size 
crack width 

were rational. 

7.7 Aperiodic signals 

Aperiodic signals are neither periodic nor quasiperiodic. 
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Aperiodic signals appear random, though they may have a deterministic foun
dation. 

An example is white noise, which is a signal that is “new” and unpredictable 
at each instant, e.g., 

t 

x(t) 

Statistically, each sample of a white-noise signal is independent of the others, 
and therefore uncorrelated to them. 

The power spectrum of white noise is, on average, flat: 

2xk 

k 

The flat spectrum of white noise is a consequence of its lack of harmonic 
structure (i.e., one cannot recognize any particular tone, or dominant fre
quency). 

We proceed to derive the spectrum of a white noise signal x(t). 

Rather than considering only one white-noise signal, we consider an ensem

ble of such signals, i.e., 
x(1)(t), x(2)(t), . . . 

where the superscipt denotes the particular realization within the ensemble. 
Each realization is independent of the others. 

Now discretize each signal so that 

xj = x(jΓt), j = 0, . . . , n − 1 
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We take the signal to have finite length n but consider the ensemble to contain 
an infinite number of realizations. 

We use angle brackets to denote ensemble averages (i.e., averages taken 
over the ensemble). 

The ensemble-averaged mean of the jth sample is then 

p
1
 (i) 

jxj≡ = lim x
p�� p

⇒

i=1 

Similarly, the mean-square value of the jth sample is


1

p
�

(i) 
j )22 lim (xxj ≡ = ⇒


p�� p 
i=1 

2Now assume stationarity: xj≡ and⇒
2

j ≡ are independent of j. 
⇒x≡ and ⇒x ≡, respectively, assume ⇒

We take these
x
⇒

mean values to be
 x≡ = 0.


Recall the autocorrelation ηm: 

1−n� 
xjxj+m. 

n 
j=0 

1 
ηm = 

By definition, each sample of white noise is uncorrelated with its past and 
future. Therefore 

⎝ 
1
⇒ηm≡ = 
n

xjxj+m 

j 

= x⇒ 2 ≡νm 

where

1 m = 0


νm = 
0 else 
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We obtain the power spectrum from the autocorrelation function by the 
Wiener-Khintchine theorem: 

n−1 � �
� 2αmk ⇒|x̂k| 2 ≡ = ⇒ηm≡ exp i

n 
m=0 

n−1 � �
� 

2 2αmk 
= ⇒x ≡νm exp i

n 
m=0 

2 = x⇒ ≡ 

= constant. 

Thus for white noise, the spectrum is indeed flat, as previously indicated: 

2xk 

k 

A more common case is “colored” noise: a continuous spectrum, but not 
constant: 

xk 
2 

k 

In such (red) colored spectra, there is a relative lack of high frequencies. The 
signal is still apparently random, but only beyond some interval Γt. 

The autocorrelation of colored noise is broader, e.g., 

Ψm 

m 
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Finally, we note a problem: power spectra can recognize a signal that is 
approximately aperiodic, but they cannot distinguish between deterministic 
systems and statistical, random systems. 

Thus we turn to Poincaré sections. 
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