
5 Forced oscillators and limit cycles 

5.1 General remarks 

How may we describe a forced oscillator? 
The linear equation 

β ̈+ ρβ̇ + γ2β = 0 (3) 

is in general inadequate. Why? 

Linearity ∞ if β(t) is a solution, then so is �β(t), � real. This is incompatible 
with bounded oscillations (i.e., βmax < α). 

We therefore introduce an equation with 

• a nonlinearity; and 

• an energy source that compensates viscous damping. 

5.2 Van der Pol equation 

Consider a damping coefficient ρ(β) such that 

ρ(β) > 0 for β large| | 

ρ(β) < 0 for β small| | 
Express this in terms of β2: 

�
β2 � 

ρ(β) = ρ0 
β2 − 1 
0 

where ρ0 > 0 and β0 is some reference amplitude. 

Now, obviously, 
ρ > 0 for β2 > β0

2 

ρ < 0 for β2 < β0
2 
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Substituting ρ into (3), we get 

d2β 
�
β2 � 

dβ 
dt2 

+ ρ0 
β0

2 − 1
dt 

+ γ2β = 0 

This equation is known as the van der Pol equation. It was introduced in the 
1920’s as a model of nonlinear electric circuits used in the first radios. 

In van der Pol’s (vaccum tube) circuits, 

• high current =∞ positive (ordinary) resistance; and 

• low current =∞ negative resistance. 

The basic behavior: large oscillations decay and small oscillations grow. 

We shall examine this system in some detail. First, we write it in non-

dimensional form.


We define new units of time and amplitude:


• unit of time = 1/γ 

• unit of amplitude = β0. 

We transform 

t t∗/γ∗ 

β β∗β0∗ 

where β∗ and t∗ are non-dimensional. 

Substituting above, we obtain 

d2β∗ 
��

β∗β0 
�2 

� 
dβ∗ 

γ2 

dt∗2 
β0 + ρ0 

β0 
− 1

dt
γβ0 + γ2β∗β0 = 0 ∗ 

Divide by γ2β0: 
d2β∗ ρ0 � 2 

� dβ∗ 

2 
+ β∗ − 1 + β∗ = 0 

dt γ dt∗ ∗ 
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Now define the dimensionless control parameter


ρ0
π = > 0. 

γ 

Finally, drop primes to obtain 

d2β dβ 
+ π(β2 − 1) + β = 0.	 (4)

dt2	 dt 

What can we say about the phase portraits? 

•	 When the amplitude of oscillations is small (βmax < 1), we have


π(β2

max − 1) < 0 ∞ negative damping


Thus trajectories spiral outward:


θ 

θ 

•	 But when the amplitude of oscillations is large (βmax > 1), 

π(β2 
max − 1) > 0 ∞ positive damping


The trajectories spiral inward:


θ 

θ 
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Intuitively, we expect a closed trajectory between these two extreme cases:


θ 

θ 

This closed trajectory is called a limit cycle.


For π > 0, the limit cycle is an attractor (and is stable).


This is a new kind of attractor. Instead of representing a single fixed point,

it represents stable oscillations.


Examples of such stable oscilations abound in nature: heartbeats (see Fig

ure from Glass); circadian (daily) cycles in body temperature, etc. Small

perturbations always return to the standard cycle.


What can we say about the limit cycle of the van der Pol equation?


With the help of various theorems (see Strogatz, Ch. 7) one can prove the

existence and stability of the limit cycle.


We may, however, make substantial progress with a simple energy balance

argument.


5.3 Energy balance for small π 

Let π ∗ 0, and take β small. Using our previous expression for energy in the 
pendulum, the non-dimensional energy is 

(β̇2 + β2)E(β, β̇) = 
1 
2
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The time variation of energy is 

dE 1 
= (2β̇β ̈+ 2 ̇ββ)

dt 2

From the van der Pol equation (4), we have 

β ̈= −π(β2 − 1)β̇ − β. 

Substituting this into the expression for dE/dt, we obtain 

dE 
= πβ̇2(1 − β2) − ββ̇ + ββ̇ (5)

dt 
= πβ̇2(1 − β2) (6) 

Now define the average of a function f(t) over one period of the oscillation: 

1 
� tO+2� 

f ∈ 
2α t0 

f(t)dt. 

Then the average energy variation over one period is


dE 1 
� t0+2� dE 

= dt. 
dt 2α t0 

dt 

Substituting equation (6) for dE/dt, we obtain 

dE 
= πβ̇2 − πβ̇2β2 . 

dt 

In steady state, the production of energy, πβ̇2, is exactly compensated by the 

dissipation of energy, πβ̇2β2 . Thus 

πβ̇2 = πβ̇2β2 

or 
β̇2 = β̇2β2 . 

Now consider the limit π ∗ 0 (from above). 
We know the approximate solution: 

β(t) = δ sin t, 
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i.e., simple sinusoidal oscillation of unknown amplitude δ.


We proceed to calculate δ from the energy balance.


The average rate of energy production is


1 
� t0+2� 

2 1 
β̇2 δ2 cos tdt = δ2 .◦ 

2α t0 
2 

The average rate of energy dissipation is


1 
� t0+2� 

2 1 
β̇2β2 δ4 sin2 t cos tdt = δ4 .◦ 

2α t0 
8 

The energy balance argument gives


1 
δ2 = 

1 
δ4 . 

2 8 

Therefore 
δ = 2. 

We thus find that, independent of π = ρ0/γ, we have the following approxi

mate solution for π � 1: 
β(t) 2 sin t.◦ 

That is, we have a limit cycle with an amplitude of 2 dimensionless units. 
Graphically, 

θ 

θ 

2 

0 1 2
−2 

0 

2 

θ 

t / 2π 

Further work (see, e.g., Strogatz) shows that this limit cycle is stable. 
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5.4 Limit cycle for π large 

The case of π large requires a different analysis. We follow the argument 
given in Strogatz (p. 212).


First, we introduce an unconventional set of phase plane variables (not ẋ =

y, ẏ = . . .). That is, the phase plane coordinates will not be β and β̇.


Recall the van der Pol equation (4), but write in terms of x = β:


ẍ+ π(x 2 − 1)ẋ + x = 0. (7) 

Notice that 

ẍ + π ̇x(x 2 − 1) = 
d 
dt 

⎡ 

ẋ + π 

�
1 
3 
x 3 − x 

�� 

. 

Let 

F (x) = 
1 
3 
x 3 − x (8) 

and 
w = ẋ + πF (x). (9) 

Then, using (8) and (9), we have 

ẇ = ẍ+ πẋ(x 2 − 1). 

Substituting the van der Pol equation (7), this gives 

ẇ = −x (10) 

Now rearrange equation (9) to obtain 

ẋ = w − πF (x) (11) 

We have thus parameterized the system by x and w. However we make one 
more change of variable. Write 

y = w/π. 

Then (10) and (11) become 

ẋ = π[y − F (x)] (12) 
1 

ẏ = −
π
x (13) 
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Now consider a trajectory in the x-y plane. 

First, draw the nullcline for x, that is, the curve showing where ẋ = 0. This 
is the cubic curve y = F (x). 

Now imagine a trajectory starting not too close to y = F (x), i.e.. suppose 

y − F (x) � 1. 

Then from the equations of motion (12) and (13), 

ẋ � π � 1


ẏ � 1/π � 1 assuming x � 1.


Thus the horizontal velocity is large and the vertical velocity is small. 
∞ trajectories move horizontally. 
The y-nullcline shows that the vertical velocity vanishes for x = 0.) 

Eventually the trajectory is so close to y = F (x) such that 

1 
y − F (x) � 

π2 

implying that 
1 

ẋ � ẏ � . 

Thus the trajectory crosses the nullcline (vertically, since ẋ = 0 on the null-
cline). 

Then ẋ changes sign, we still have ẋ � ẏ � 1/π, and the trajectories crawl 
slowly along the nullcline. 

π 
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What happens at the knee (the minimum of F (x))?

The trajectories jump sideways again, as may be inferred from the symmetry

x ∗ −x, y ∗ −y.


The trajectory closes to form the limit cycle.


Summary: The dynamics has two widely separated time scales:


• The crawls: Γt � π (ẋ � 1/π) 

• The jumps: Γt � 1/π (ẋ � π) 

A time series of x(t) = β(t) shows a classic relaxation oscillation: 

Relaxation oscillations are periodic processes with two time scales: a slow 
buildup is followed by a fast discharge. 

Examples include 

• stick-slip friction (earthquakes, avalanches, bowed violin strings, etc.) 

• nerve cells, heart beats ( large literature in mathematical biology...) 

5.5 A final note 

Limit cycles exist only in nonlinear systems. Why? 
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�

A linear system ψẋ = Aψx can have closed periodic orbits, but not an isolated 
orbit. 

That is, linearity requires that if ψx(t) is a solution, so is �ψx(t), � = 0. 

Thus the amplitude of a periodic cycle in a linear system depends on the 
initial conditions. 

The amplitude of a limit cycle, however, is independent of the initial condi

tions. 
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