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2 Stability of solutions to ODEs 

How can we address the question of stability in general? 

We proceed from the example of the pendulum equation. We reduce this 
second order ODE, 

¨ g
β + sin β = 0,

l 
to two first order ODE’s. 

Write x1 = β, x2 = β̇. Then 

ẋ1 = x2 
g 

ẋ2 = sin x1− 
l 

The equilibrium points, or fixed points, are where the trajectories in phase 
space stop, i.e. where 

ψẋ = 
ẋ1 = ψ0 
ẋ2 

For the pendulum, this requires 

x2 = 0 

x1 = ±nα, n = 0, 1, 2, . . . 

Since sin x1 is periodic, the only distinct fixed points are 
� 
β 
� � 

0 
� � 

β 
� � 

α 
�


β̇
=

0 
and 

β̇
=

0


Intuitively, the first is stable and the second is not. 
How may we be more precise? 

2.1 Linear systems 

Consider the problem in general. First, assume that we have the linear system 

u̇1 = a11u1 + a12u2 

u̇2 = a21u1 + a22u2 
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or

ψu̇ = Aψu


with 
u1(t) a11 a12ψu(t) = and A = 
u2(t) a21 a22 

Assume A has an inverse and that its eigenvalues are distinct. 
Then the only fixed point (where ψu̇ = 0) is ψu = 0. 

The solution, in general, is 

ψu(t) = �1e 
�1t cψ1 + �2e 

�2t cψ2 

where 

• �1, �2 are eigenvalues of A. 

• cψ1, cψ2 are eigenvectors of A. 

• �1 and �2 are constants (deriving from initial conditions). 

What are the possibilities for stability? 

1. �1 and �2 are both real. 

(a) If �1 < 0 and �2 < 0, then u(t) ∗ 0 as t ∗ →. 
∞ stable. 

u2 

u1 
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(b) If �1 > 0 and �2 > 0, then u(t) ∗ → as t ∗ →. 
∞ unstable. 

u2 

u1 

(c) If �1 < 0 < �2, 

• If ψu(0) is a multiple of cψ1, then u(t) ∗ 0 as t ∗ →. 

• If ψu(0) is a multiple of cψ2, then u(t) ∗ → as t ∗ →. 

∞ unstable saddle. 
u2 

u1 

c2 

c1 

2. �1, �2 are both complex. Then 

� = ε ± iq. 

Assuming ψu(t) is real,


ψu(t) = e θt(λψ1 cos qt + λψ2 sin qt)


(�ρ1, �ρ2 are formed from a linear combination of of A’s eigenvectors and the initial conditions). 

There are three possibilities: 

(a) Re{�} = ε > 0 =∞ unstable. 
u2 

u1 
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(b) ε < 0 =∞ stable. 
u2 

u1 

(c) ε = 0 =∞ marginally stable. 
u2 

u1 

We leave the case of repeated eigenvalues to Strogatz (pp. 135-6). 

2.2 Nonlinear systems 

We are interested in the qualitative behavior of systems like 

ẋ1 = f1(x1, x2) 

ẋ2 = f2(x1, x2) 

where f1 and f2 are nonlinear functions of x1 and x2. 

x�1Suppose is a fixed point. Is it stable? 
x�2 

Define ui = xi − x� to be a small departure from the fixed point. i 

Perform a Taylor expansion around the fixed point. 

For a one dimensional function g(x) we would have 

g(x � + u) � g(x �) + g �(x �) u· 

17 



�
 � 

�
�
�
�
�
�
�
�

�
 � � �
 �
 �


�
 �
 �
 �


Here we obtain 

fi(x1, x2) = fi(x1
�, x�2) + 

ωfi 
(x1

�, x�2) u1 + 
ωfi 

(x1
�, x�2) u2 + O(u 2)

ωx1 ωx2⎜�

=0 since fixed pt 

The first term vanishes since it is evaluated at the fixed point. 

Also, since 
ui = xi − x�i 

we have 
u̇i = ẋi = fi(x1, x2) 

Substituting u̇i = fi(x1, x2) above, we obtain 

ψu̇ Aψu◦ 

where


A is called the Jacobian matrix of f at ψx�. 

We now apply these results to the pendulum. We have 

ẋ1 = f1(x1, x2) = x2 
g 

ẋ2 = f2(x1, x2) = − sin x1
l 

⎪

γf1 γf1 

γx1 γx2 �
⎞ 

⎬
⎛A =


γf2 γf2 

γx1 γx2 τx=τx� 

and

0 1
 x�1 0


A = for
−g/l 0

= 

x�2 0


x�1 α

There is a different A for the case
 = . (The sign of g/l changes.)


x�2 0 

The question of stability is then addressed just as in the linear case, via 
calculation of the eigenvalues and eigenvectors. 
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