
1 Pendulum 

1.1 Free oscillator 

To introduce dynamical systems, we begin with one of the simplest: a free 
oscillator. Specifically, we consider an unforced, undamped pendulum. 

The arc length (displacement) between the pendulum’s current position and 
rest position (β = 0) is 

s = lβ 

Therefore 

ṡ = lβ̇ 

¨ s̈ = lβ 

From Newton’s 2nd law, 
¨ F = mlβ 

The restoring force is given by −mg sin β. (It acts in the direction opposite 
to sgn(β)). Thus 

¨ F = mlβ = −mg sin β 

or 
d2β g

+ sin β = 0. 
dt2 l 

l 

mg 
mg sinθ 

θ 

Our pendulum equation is idealized: it assumes, e.g., a point mass, a rigid 
geometry, and most importantly, no friction. 
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The equation is nonlinear, because of the sin β term. Thus the equation is 
not easily solved. 

However for small β � 1 we have sin β β. Then 
d2β 

◦ 
g 
β 

dt2 
= − 

l 
whose solution is 

g
β = β0 cos t + θ 

l 
or 

β = β0 cos(γt + θ) 

where the angular frequency is 

g
γ = ,

l 
the period is 

l 
T = 2α , 

g 

and β0 and θ come from the initial conditions. 

Note that the motion is exactly periodic.

Furthermore, the period T is independent of the amplitude β0.
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1.2 Global view of dynamics 

What do we need to know to completely describe the instantaneous state of 
the pendulum? 

The position β and the velocity 
dβ 

= β. ˙
dt 
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Instead of integrating our o.d.e. for the pendulum, we seek a representation 
of the solution in the plane of β and β̇. 

Because the solution is periodic, we know that the resulting trajectory must 
be closed: 

θ 

θ 

In which direction is the flow? 
What shape does the curve take? 

To calculate the curve, we note that it should be characterized by constant 
energy, since no energy is input to the system (it is not driven) and none is 
dissipated (there is no friction). 

Therefore we compute the energy E(β, β̇), and expect the trajectories to be 
curves of E(β, β̇) = const. 

1.3 Energy in the plane pendulum 

mg 
mg sinθ 

θθl cos 

h 

l 

The pendulum’s height above its rest position is h = l − l cos β. 
As before, s = arc length = lβ. 
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The kinetic energy T is 

1 2 1 1 
T = mṡ = m(lβ̇)2 = ml2β̇2 

2 2 2 

The potential energy U is 

U = mgh	 = mg(l − l cos β) 

= mgl(1 − cos β) 

Therefore the energy E(β, β̇) is 

E(β, β̇) = 
1 
ml2β̇2 + mgl(1 − cos β)

2 

We check that E(β, β̇) is a constant of motion by calculating its time deriva
tive: 

dE 1 
= ml2(2β̇β̈) + mglβ̇ sin β 

dt 2 

= ml2β̇ 
�

¨ β + 
g 

sin β 
� 

l 
= 0 (since the pend. eqn. ¨ β = − 

g 
l 

sin β) 

So what do these curves look like?

Take β0 to be the highest point of motion.


θ0 

Then 
β̇(β0) = 0 

and 
E(β0, β̇ | ) = mgl(1 − cos β0)λ0 

Since cos β = 1 − 2 sin2(β/2), 

E(β0, β̇ |λ0 ) = 2mgl sin2 

�
β

2 
0 
� 

= E(β, β̇) in general, since E is conserved 

10 



Now write T = E − U : 

1 
2 
ml2β̇2 = 2mgl 

� 

sin2 β0 

2 
− sin2 β 

2 

� 

(1) 

β̇2 = 4 
g 
l 

� 

sin2 β0 

2 
− sin2 β 

2 

� 

(2) 

For small β0 such that β � 1, 

β̇2 ◦ 4 
g

l 

�
β

4 
0
2 

− 
β

4 

2 � 

or � �2 
β̇ 

+ β2 β2 
� 0 
g/l 

◦ 

Thus for small β the curves are circles of radius β0 in the plane of β and 
˙
�

β/ g/l. 
θ / (g/l)1/2 

θ 

What about β0 large? 
Consider the case β0 = α. 

For β0 = α, E = 2mgl, and equation (2) gives 

g 
⎡ �α �

�
β
�� 

β̇2 = 4 sin2 − sin2 

l 2 2 
�
β
� 

g 2 = 4 cos 
l 2 

Thus for β0 = α, the curves are the cosines 

β̇ = ±2 

� 
g 

�
β 
� 

cos . 
l 2 
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Intuitively, we recognize that this curve separates

oscillatory motion (E < 2mgl) from rotary motion (E > 2mgl).


Thus for undampled, nonlinear pendulum we can construct the following

phase portrait:


−2 −1 0 1 2
−2 

0 

2 

(d
θ 

/ d
t)

 / 
(g

 / 
l)1/

2 

θ / π 

The portrait is periodic.


The points β̇ = 0, β = . . . , −2α, 0, 2α, . . . are stable equilibrium, or fixed,

points (actually, marginally stable).


The points β̇ = 0, β = . . . , −3α, −α, α, 3α . . . are unstable fixed points.
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The trajectories appear to cross, but they do not. Why not? 
(Deterministic trajectories.) 

If the trajectories actually arrive to these crossing points, then what happens? 
(The motion stops, awaiting instability. But we shall see that it would take 
infinite time to arrive at these points.) 

13



