
�

�

12.006/18.353J

Supplement for Problem Set 9

Due to the computationally intensive plots that you need to generate throughout this problem
set, it may be best to work with a script file as explained in section 4 of the solving ODEs
on matlab (ps3supp.pdf).

problem 1

To determine the µ̄i, you must be creative. One way to do it is fairly obvious. Use the initial
condition x1 = x �, where x is a fixed point at the ith bifurcation. (You should know at least
one x since one is the same at all of the 2i bifurcation points) Then, starting with the µ̄1,
vary mu in small increments until you notice that x(2i) = x1. Continue this until the seventh
is found.

problems 2,3

To generate the map of the asymptotic values of xn, for varying µ, you again should write a
 script that will do this for you. Many of you will figure this out so skip the rest of this

supplement, but for those of you who don’t, the framework of the script might be:

•	 start with µ = µ0(your choice)

•	 evaluate iterate.m many times

•	 Let transients decay. This can be done simply by letting the system run for a very long
time and hope it has reached steady state, or by using a more efficient convergence
criterion of your choice.

•	 After the system has reached the steady state oscillation, plot the next N iterations,
where N is a large enough to capture as many bifurcations as you want

•	 Increase µ by a small amount

•	 Perform entire process again.

That will generate for you a nice map showing branching of the asympotic values, as a
function of mu.

A quick and dirty matlab way to implement something like that could be:

%script to generate logistic map

%MAP PARAMETERS

%mu range
mu_0=??; Starting mu, your choice
mu_stop=??; Ending mu, your choice
mu_delta=??; Mu step, your choice

%convergence parameters
iter_conv=??;	 % Guess at number of iterations required for

% convergence, or use completely different convergence
% criterion of your choice

%# of points to plot
N=??;

%standard initial condition
x_0=??;

%CALCULATIONS
Ntot=iter_conv+N;

figure(1)

%cycle mu
for mu=[mu_0:mu_delta:mu_stop]

[i,x]=iterate(mu,x_0,Ntot);

% determine converged data (using convergence criterion of choice)

x_conv=x(iter_conv:Ntot);

% plot converged data

mu_n=mu*ones(1,length(x_conv))

plot(mu_n,x_conv,’.’) %plot only dots since lines connecting

%points would make a mess
hold on

end

hold off

