
PROBLEM SET 7 (SUPPLEMENT)

Section 1: Lorenz Model

The Lorenz model is given by

Ẋ = P (Y − X) (1)

Ẏ = −XZ + rX − Y (2)

Ż = XY − bZ (3)

We are using ode45 again in this problem set! This Matlab routine solves system of ODEs
using the 4th order RungeKutta method. lorenz.m is provided.

Lets take a look at lorenz.m. The function is called lorenz. The next line declares
that dy be a vector of length 3 and initializes to zeros. The next few lines declare the
various parameters (P , r, and b) in the Lorenz model. Finally, the gut of the function,
the specification of the 3 first order ODEs:

dy(1) = P*(y(2) y(1));
dy(2) = y(1)*y(3) + r*y(1) y(2);
dy(3) = y(1)*y(2) b*y(3);

In this problem set, P = 10, b = 8/3 and r is the primary parameter of interest to play
around with. In the past, you have done this for other systems. (eg. µ in xn+1 =
4µxn(1 − xn), h in the driven pendulum, and α in the first problem of your midterm!)
This diversity should give you some appreciation of the universality of these phenomena.

As given, r is set to 0.5 in lorenz.m. You should use an editor to change this if you
want to solve the model for other values of r and REMEMBER to save your changes
before running ode45. To start Matlab add matlab and execute matlab &.
An example run may look like

>> options = odeset(’RelTol’,1e4,’AbsTol’,[1e6 1e6 1e8]);

>> tspan=0:0.01:100;

>> [t,y] = ode45(’lorenz’, tspan, [0.2 0.2 0.3], options);

The first line sets various options controlling the numerical tolerances. The second line
sets the time interval and increment size. Initial conditions are:

X(0) = 0.2

Y (0) = 0.2

Z(0) = 0.3

1

,

Note that y stores all the time series for X, Y, Z, in consistent with the specification in
lorenz.m.

y(:, 1) is X

y(:, 2) is Y

y(:, 3) is Z

To plot various time series

>>plot(t,y(:,1),’’);
>>plot(t,y(:,2),’’);
>>plot(t,y(:,3),’’);

To plot XY, XZ, and YZ projections as your Poincar’e section

>>plot(y(:,1), y(:,2), ’.’);
>>plot(y(:,1), y(:,3), ’.’);
>>plot(y(:,2), y(:,3), ’.’);

To plot trajectory in 3D.

>>plot3(y(:,1), y(:,2), y(:,3));

To see the time evolution (animation),

>>comet3(y(:,1), y(:,2), y(:,3));

To investigate exponential divergence of small differences in initial conditions. You should
run another session of ode45 but saving your XY Z in a different variable name than y.
eg.

>> [t,g] = ode45(’lorenz’, tspan, [0.200000001 0.2 0.3], options);

Note the almost zero deviation from the previous run. To compute the “distance” between
points in two time series

>> distance = sqrt((y(:,1) g(:,1)).^2 + (y(:,2) g(:,2)).^2 +
(y(:,3) g(:,3)).^2);

>>
>>
>> plot(t,log(distance));

2

An exponential divergence will correspond to a straight line with positive slope on a
semilogy plot. If your plot looks irregular, you can try average over several runs of nearby
ICs.

OK... hope I have given enough information on this problem set. Please let us know
immediately if you experience any problems.

3

