
Problem 2 – Solution 
 
(a) The 4 equations are those we wrote in recitation, just expressed in terms of z.  That is 
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where Uz0 is the area-averaged velocity at a 
point where the solid is not moving, = U0

 
(b) Combining (1)-(4) we obtain, for the general case: 
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Note that the term Uz0 is only = 0 in cases for which there is one non-
porous boundary (as in the handout from class) but not in general. 
• This is where we went wrong in recitation! 

 
(c) Now we can assume steadiness (∂/∂t = 0) and obtain 
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   Multiply by dz and integrate once: 
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   And integrate again: 

     zuczcz
kH

U
=++− 21

2
0

2
   (4) 

 



Boundary conditions are that: 
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Using (3): 
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This solution satisfies the boundary conditions we discussed in recitation, and has the 
form 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The problem in recitation arose from starting with the equation 
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rather than the more general expression in (b) above!!! 


