Molecular, Cellular & Tissue Biomechanics

Matthew Lang (BE & ME), Roger Kamm (BE & ME) TA's: Karolina Corin and Andrea Bryan

Goal: Develop a *fundamental* understanding of biomechanics over a wide range of length scales.

MOLECULAR MECHANICS

Biomolecules and intermolecular forces Single molecule biopolymer mechanics Formation and dissolution of bonds Motion at the molecular/macromolecular level

TISSUE MECHANICS

Molecular structure --> physical properties Continuum, elastic models (stress, strain, constitutive laws) Viscoelasticity Poroelasticity Electrochemical effects on tissue properties

CELLULAR MECHANICS

Structure/function/properties of the cell Biomembranes The cytoskeleton Cell adhesion and aggregation Cell migration Mechanotransduction

Some Learning Objectives

- 1. To understand the fundamental concepts of mechanics and be able to apply them to simple problems in the deformation of continuous media
- 2. To understand the underlying basis for the mechanical properties of molecules, cells and tissues
- 3. To be able to model biological materials using methods appropriate over diverse length scales
- 4. To be familiar with the wide spectrum of measurement techniques that are currently used to determine mechanical properties
- 5. To appreciate the close interconnections between mechanics and biology/chemistry of living systems

Modeling Complex Material Properties Continuum **Microstructural** entangled polymer bending plate Constitutive relations and force balance strut model Viscoelastic or poroelastic solid $\tau_{21}(t)$

Biomechanics at all length scales

			- Tr	aditional dom biomechan	nain of ics
	Quantum mechanics	Molecular dynamics	Networks and Brownian dynamics	Continuum mechanics	Large-scale, discrete or lumped systems
•				Bone	Flight
	Molecular	cular motors Migration Cartilage		Swimming	
	Mechanotra	Mechanotransduction Cytoskeletal rheology System			
	atoms	proteins	organelles	cells orga	ns organisms
	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁶	10 ⁻²	10 ⁰ meters

Muscles: Spanning from Macro to Nano

Collection of myofibers

Figure by MIT OCW.

Typical Eukaryotic Cell

Plasma Membrane

Plasma Membrane

Cytoskeleton

		"rigidity"
	Diameter (nm)	Persistence Length (µm)
actin	6-8	15
microtubule	10	60,000
intermediate filament	20-25	1-3

TEM image of a cytoskeleton removed due to copyright restrictions.

When stressed, cells form stress fibers, mediated by a variety of **actin-binding proteins**.

TEM of cytoskeleton, Hartwick, http://expmed.bwh .harvard.edu

Actin filament: a force of 10 pN supported by a single actin filament (E~10⁹ Pa) stretches by only 0.02%!!

Diagram showing the structure of actin removed due to copyright restrictions.

Measuring Complex Material Properties

Aspiration

Images removed due to copyright restrictions.

T. Savin, MIT

Cell Adhesion

Molecular properties in cell adhesion: a physical and engineering perspective

IRENDS in Biotechnology Vol.19 No.8 August 2007

Chase E. Orsello, Douglas A. Lauffenburger and Daniel A. Hammer

310

Physical forces effect bond association/dissociation

Finite contact times

Cell deformation

Dynamic Processes: Cell Migration

Cell Motility

Fluorescently marked actin

Images removed due to copyright restrictions.

- Actin is a polymer that contributes to the stiffness of the cytoskeleton
- The cytoskeleton is active
- Coordinated processes: adhesion, (de-) polymerization

Active Cell Contraction

Image removed due to copyright restrictions.

Cardiac myocyte (Jan Lammerding)

Cytoskeletal Mechanics Probed by External Force

Image removed due to copyright restrictions.

Fibroblast with fluorescent mitochondria forced by a magnetic bead D. Ingber, P. LeDuc

Mechanotransduction: Hair cell stimulation

Image removed due to copyright restrictions.

SEM of the stereocilia on the surface of a single hair cell (Hudspeth) Tension in the tip link activates a stretch-activated ion channel, leading to intracellular calcium ion fluctuations.

Image removed due to copyright restrictions.

Molecular dynamics simulation of channel regulation by membrane tension (Gullingsgrud, et al., Biophys J, 2001)

But other evidence suggests that the pore increases to >20 angstroms! Figure by MIT OCW.

Molecular, Cellular & Tissue Biomechanics

Biology is soft, wet & dynamic

Using Engineering/Physics to Unravel & Manipulate Biology

- Scaling arguments
- Mechanical models
- Experimental techniques
- Importance of the stochastic nature of biology

Further Information

Suggested Readings:

- (a) Y. C. Fung, **Biomechanics: Mechanical Properties of Living Tissues**, 2nd Edition, Springer - Verlag, 1993
- (b) D. Boal, **Mechanics of the Cell**, 2001.
- (c) H. Lodish, D. Baltimore, L. Zipurksy, P. Matsudaira, **Molecular Cell Biology**, 2002.
- (d) K. Dill and S. Bromberg, **Molecular Driving Forces**, 2003
- (e) J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, 2001
- (f) M. Mofrad and R. Kamm, Cytoskeletal Mechanics: Models and Measurements, 2006.
- (g) J. Humphrey, Introduction to Biomechanics, 2004.