Forces at the Molecular Level

Covalent Interactions

Here electrons are truly shared between atoms. To do this properly we need to know the wavefunctions describing the electron probability density around the atoms. Lets assume a model of a bond as a spring to make some approximations.

Examples of typical energy of covalent bonds:

Carbon Carbon single bond ~140kT

Carbon Carbon double bond ~240kT

Force on a spring ~ kx

 $F_{spring} := k_{stiff} \cdot x$

integrate to get the energy, Mathcad does this for us

Energy in a spring =
$$\int F_{\text{spring}} dx \rightarrow \frac{1}{2} \cdot k_{\text{stiff}} \cdot x^2$$

 $E_{bond} := 140.4.$ units of pN*nm

A reasonable dissociation distance for this bond is 0.5 angstroms

set this value $x := \frac{0.5}{10}$ converted to nm

We can now estimate an approximate stiffness for the bond:

$$k_{stiff_estimate} := 2 \cdot \frac{E_{bond}}{x^2}$$

 $k_{stiff_estimate} = 4.592 \times 10^5$ units of pN/nm

now generate a characteristic force required to rupture a covalent bond characteristic_force_covalent := k_{stiff_estimate} x

characteristic_force_covalent = 2.296×10^4 units of pN this = 23 nN or so

These bonds are strong you couldn't break for example with an optical trap, need more force

Ionic bonding/interactions

develop using the physics of the coulombic interaction

charge on an electron Thermal Energy "kT" $q_1 := 1.60 \times 10^{-19}$ distance separation, "r" $kT := 4.1 \cdot 10^{-21} J$ $r := 2.3 \cdot 10^{-10}$ $q_2 := q_1$ 4.1 pN*nm £01 = 8.85·10^{−12} typical NaCl separation is 2.3 angstroms <u>ε</u>.≔ 1 $\mathbf{E}_{\text{coulomb}} \coloneqq \frac{\mathbf{q}_1 \cdot \mathbf{q}_2}{4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot \mathbf{r} \cdot \mathbf{kT}}$ epsillon for water =80, for oils, it is ~3 $E_{coulomb} = 244.104$ kT do salt, then do salt in water, units in kT also show salt in non-polar

$$E_{\text{water}} \coloneqq \frac{q_1 \cdot q_2}{4 \cdot \pi \cdot \varepsilon_0 \cdot 80 \cdot r \cdot kT} \qquad \qquad E_{\text{oil}} \coloneqq \frac{q_1 \cdot q_2}{4 \cdot \pi \cdot \varepsilon_0 \cdot 3 \cdot r \cdot kT}$$
$$E_{\text{water}} = 3.051 \qquad \qquad E_{\text{oil}} = 81.368$$
Energy in units of kT

Coulombic Force

Coulombic force goes as 1/r²

F _{coulomb} :=	$q_1 \cdot q_2$
	$4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot r^2$

Lets add up an array of work elements create a range of r values increasing to infinity

 $F_{\text{coulomb}} = 4.351 \times 10^{-9} \text{ N}$

 $F_{\text{cou}}(\mathbf{ri}) \coloneqq \frac{\mathbf{q}_1 \cdot \mathbf{q}_2}{4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot \mathbf{ri}^2}$

it := 0, 1..50000
$$\operatorname{rin}_{it}$$
 := r + it $\cdot 0.2 \cdot 10^{-10}$
 $\operatorname{rin}_{0} = 2.3 \times 10^{-10}$
 $\operatorname{rin}_{3} = 2.9 \times 10^{-10}$

sum over the force, multiply times the distance, add these all up to get the energy. basically integrate

$$EF_{total} \coloneqq \sum_{it} \left(F_{cou}(rin_{it}) \cdot \frac{0.2 \cdot 10^{-10}}{kT} \right)$$
 from summation from equation
$$EF_{total} = 254.968$$
 units of kT
$$E_{coulomb} = 244.104$$

try making the boxes smaller, approach the integration limit

Instead of doing this by hand, we can do the integral in Mathcad to get the 1/r dependence:

$$F_{\text{cou}} \coloneqq \frac{q_{11} \cdot q_{22}}{4 \cdot \pi \cdot \varepsilon_{00} \cdot \varepsilon_{11} \cdot r_{3}^{2}}$$

Energy =
$$\int -F_{\text{cou}} \, dr_{3} \rightarrow \frac{1}{4} \cdot q_{11} \cdot \frac{q_{22}}{\pi \cdot \varepsilon_{00} \cdot \varepsilon_{11} \cdot r_{3}}$$

Bjerrum length

Ask: How close do ions need to be to have a stable interaction?

set for water set is a solve coulombic interaction for a "kT" characteristic length $k_{\rm m} := 80$

$$L_{\mathbf{b}} \coloneqq \frac{\mathbf{q}_1 \cdot \mathbf{q}_2}{4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot \mathbf{k} \mathbf{T}}$$

 $L_b = 7.018 \times 10^{-10}$ units of meters Should be about 7 angstroms in water

 $E_{cou_debye} = 0.698$

$$E_{coulomb2} = 1.871$$

Lennard-Jones potential (Carbon example) units in kcal/mole converted to kT units

 $C_{12} \coloneqq 2.75 \cdot 10^{6} \cdot \frac{4.1}{0.59}$ repulsive term $C_{6} \coloneqq 1425 \cdot \frac{4.1}{0.59}$ attractive terms

conversion factor is 4.1 (kT)/0.59 (kcal/mole)

$$E_{LJ}(x) := \frac{C_{12}}{x^{12}} - \frac{C_6}{x^6}$$
$$E_{AttrLJ}(x) := \frac{-C_6}{x^6} \qquad E_{RepLJ}(x) := \frac{C_{12}}{x^{12}}$$

$$d := 0.001, 0.01..8$$

 $E_{\text{base}}(x) \coloneqq x \cdot 0 \qquad E_{kT}(x) \coloneqq x \cdot 0 - 1$

green is repulsive potential dark blue is attractive black is sum light blue is kT level

example parameters from Creighton