Forces at the Molecular Level

Covalent Interactions

Here electrons are truly shared between atoms. To do this properly we need to know the wavefunctions describing the electron probability density around the atoms. Lets assume a model of a bond as a spring to make some approximations.

Examples of typical energy of covalent bonds:

Carbon Carbon single bond ~140kT

Carbon Carbon double bond ~240kT

Force on a spring $\sim kx$

 $F_{spring} := k_{stiff} \cdot x$

integrate to get the energy, Mathcad does this for us

Energy in a spring =
$$
\int F_{spring} dx \rightarrow \frac{1}{2} k_{stiff} x^2
$$

 E_{bond} := 140⋅4. units of pN*nm

A reasonable dissociation distance for this bond is 0.5 angstroms

set this value
$$
x := \frac{0.5}{10}
$$
 converted to nm

We can now estimate an approximate stiffness for the bond:

k_{stiff_e}estimate :=
$$
2 \cdot \frac{E_{bond}}{x^2}
$$

k_{stiff_e}estimate = 4.592×10^5 units of pN/nm

now generate a characteristic force required to rupture a covalent bond \therefore characteristic_force_covalent := k_{stiff_estimate} \cdot x

characteristic_force_covalent = 2.296×10^4 units of pN this = 23 nN or so

These bonds are strong you couldn't break for example with an optical trap, need more force

Ionic bonding/interactions

develop using the physics of the coulombic interaction

charge on an electron Thermal Energy "kT" distance separation, "r" $\rm q_1 \coloneqq 1.60 \times 10^{-19}$ $kT := 4.1 \cdot 10^{-21}$ 4.1 pN*nm $J \qquad r := 2.3 \cdot 10^{-10}$ typical NaCl separation is 2.3 angstroms $q_2 := q_1$ $\epsilon_{\text{Qn}} = 8.85 \cdot 10^{-12}$ $\kappa = 1$ $E_{\text{coulomb}} \coloneqq \frac{q_1 \cdot q_2}{4 \pi \epsilon_0 \epsilon_0 r kT}$ epsillon for water =80, for oils, it is ~3 $4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot \text{r} \cdot \text{kT}$ for oils, it is ~3 $E_{\text{coulomb}} = 244.104$ kT do salt, then do salt in water,
units in kT also show salt in non-polar also show salt in non-polar

$$
E_{\text{water}} := \frac{q_1 \cdot q_2}{4 \cdot \pi \cdot \varepsilon_0 \cdot 80 \cdot r \cdot kT}
$$

\n
$$
E_{\text{outer}} = 3.051
$$

\n
$$
E_{\text{oil}} = 81.368
$$

\n
$$
E_{\text{on}l} = 81.368
$$

\nEnergy in units of kT

Coulombic Force

 \mathbf{F}

 $F_{\text{cou}}(ri) :=$

 $q_1 \cdot q_2$

 $q_1 \cdot q_2$

 $4 \cdot \pi \cdot \epsilon_0 \cdot \epsilon \cdot \pi^2$

Coulombic force goes as 1/r²

it := 0, 1 .. 50000
$$
\sin_{it}
$$
 := r + it·0.2·10⁻¹⁰
 $\sin_0 = 2.3 \times 10^{-10}$
 $\sin_3 = 2.9 \times 10^{-10}$

of work elements

sum over the force, multiply times the distance, add these all up to get the energy. basically integrate

$$
EF_{\text{total}} := \sum_{it} \left(F_{\text{coul}} \left(\text{rin}_{it} \right) \cdot \frac{0.2 \cdot 10^{-10}}{k \cdot T} \right) \qquad \text{from summation} \qquad \text{from equation} \\ EF_{\text{total}} = 254.968 \qquad \text{units of kT} \qquad \text{E}_{\text{coulomb}} = 244.104
$$

Matt Lang, MIT

try making the boxes smaller, approach the integration limit

Instead of doing this by hand, we can do the integral in Mathcad to get the 1/r dependence:

$$
F_{\text{cou}} := \frac{q_{11} \cdot q_{22}}{4 \cdot \pi \cdot \varepsilon_{00} \cdot \varepsilon_{11} \cdot r_3^2}
$$

Energy =
$$
\int -F_{\text{cou}} dr_3 \rightarrow \frac{1}{4} \cdot q_{11} \cdot \frac{q_{22}}{\pi \cdot \varepsilon_{00} \cdot \varepsilon_{11} \cdot r_3}
$$

Ask: How close do ions need to be to have **Bjerrum length** a stable interaction?

> solve coulombic interaction for a "kT" set for water characteristic length

$$
L_b := \frac{q_1 \cdot q_2}{4 \cdot \pi \cdot \epsilon_0 \cdot \epsilon \cdot kT}
$$

 ϵ := 80

units of meters

 $L_b = 7.018 \times 10^{-10}$ Should be about 7 angstroms
in water in water

Hydrogen Bond Examples distance separation, "r" $\chi = 3.0 \cdot 10^{-10}$ put in partial charges $q_1 \cdot q_2$ $E_{hydrogenbond} := (0.2)·(0.3)·$ $4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot \text{r} \cdot \text{kT}$ E_{hydrogenbond} = 11.229 units of kT Debye Length
but ions can screen this. We can calculate an
but ions can screen this. We can calculate an ionic strength and a screening parameter that leads to a characteristic screening length called $i := 0...1$ the Debye Length. Ionic Strength Make a table with concentrations and valency concentration charge or valency Molar Dataconc := 0 1 0 1·10-4 1 $1.10-4$ -1 concentrations in a cell ~150mM plug this in and look at the Debye length $C_{\text{conc}} := \text{Dataconc} \left\langle 0 \right\rangle$ concentration $Z := \text{Dataconc} \left\langle 1 \right\rangle$ charge on ion $C_{\text{conc}} = \begin{pmatrix} 1 \times 10^{-4} \\ 1 \times 10^{-4} \end{pmatrix}$ $z = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\left\langle -1\right\rangle$ $\overline{}$ formula for ionic strength the higher the ionic strength, the more things are screened $I_{str} = \left(\frac{1}{2}\right) \sum \left[C_{conc_i} (z_i)^2 \right]$ $I_{str} = 1 \times 10^{-4}$ $\big($ $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ \sum l, $\text{conc}_i^{\cdot}(z_i)^2$ $\frac{1}{2}$ $I_{str} = 1 \times 10$ i $\frac{1}{2}$ 26 $\frac{10^{-12}}{2}$ 26 $\frac{223}{202}$ 2²⁶ $\epsilon_0 = 78.54$ $\epsilon_0 = 8.85 \times 10^{-12}$ $n_0 = 6.022 \cdot 10$ $k_{\text{screen}} \coloneqq \begin{bmatrix} 2 \cdot \frac{q_1^2 \cdot n_0}{q_1 \cdot q_1} \cdot \sqrt{I_{\text{str}}} \\ 2 \cdot \frac{q_2^2 \cdot n_0}{q_1 \cdot q_1 \cdot q_1} \cdot \sqrt{I_{\text{str}}} \end{bmatrix}$ this equation is approximate, valid in a limit of dilute ε \cdot ε₀ \cdot κT $k_{screen} = 3.289 \times 10^7$ screening parameter (units of inverse length) Will a charge "see" the full other charge? The ions in **Debye Length** solution, reduce a charge, effectively the molecule "sees" less of the original charge. $1 \rightarrow 10^{10} = 304.021$ k_{screen} screening length, units of Angstroms these are short range, contact interactions

$$
\lambda_{\mathbf{D}} := \frac{1}{k_{\text{screen}}} \quad \lambda_{\mathbf{D}} = 3.04 \times 10^{-8}
$$
\n
$$
\epsilon = 78.54 \quad \mathbf{r} = 3 \times 10^{-10}
$$
\n
$$
\hat{\mathbf{g}}_{\mathbf{a}} := 1 \quad \mathbf{f}_{\mathbf{a}} = 300 \cdot 10^{-10}
$$
\n
$$
\mathbf{E}_{\text{cou-debye}} := \frac{\mathbf{q}_1 \cdot \mathbf{q}_2}{4 \cdot \pi \cdot \mathbf{\varepsilon}_0 \cdot \mathbf{\varepsilon} \cdot \mathbf{r} \cdot \mathbf{k} \mathbf{T}} \cdot \mathbf{e}^{\mathbf{h}_{\mathbf{a}}}
$$
\n
$$
\mathbf{E}_{\text{cou-coulomb2}} := \frac{\mathbf{q}_1 \cdot \mathbf{q}_2}{4 \cdot \pi \cdot \mathbf{\varepsilon}_0 \cdot \mathbf{\varepsilon} \cdot \mathbf{r} \cdot \mathbf{k} \mathbf{T}}
$$

$$
E_{\text{cou_debye}} = 0.698
$$

$$
B_{\text{coulomb2}} = 1.871
$$

<u>Lormand Conco</u> potomal example) kT units (Carbon example)

Lennard-Jones potential units in kcal/mole converted to

 $C_{12} = 2.75 \cdot 10^6 \cdot \frac{4.1}{0.59}$ repulsive term attractive terms C_{12} C_6 = 1425 $E_{LJ}(x) := \frac{C_{12}}{x^{12}} - \frac{C_6}{x^6}$
 $C_6 := 1425 \cdot \frac{4.1}{0.59}$

conversion factor is 4.1 (kT)/0.59 (kcal/mole)

$$
E_{\text{AttrLJ}}(x) := \frac{-C_6}{x^6}
$$
 $E_{\text{RepLJ}}(x) := \frac{C_{12}}{x^{12}}$ $E_{\text{base}}(x) := x \cdot 0$ $E_{\text{kT}}(x) := x \cdot 0 - 1$

$$
d:=0.001\,,0.01\,..\,8
$$

van der Walls interaction for Carbon 0 5 Energy (units of kT) 0 2 4 6 8 Separation between atoms (Angstroms) example parameters

green is repulsive potential dark blue is attractive black is sum light blue is kT level

from Creighton