Diffusion example, simulation of a random walk

Try changing these variables, number of particles, step size, number of steps

Number of particles := 2200 Number of steps := 1000 Step_size := 5 j := 0 .. Number_of_particles $part_i := 0$ drift := 0 add some drift Let the computer roll the dice This is a simple program, we have Simulate(part) := delta \leftarrow Step size an array of numbers that we for $j \in 0$...Number_of_particles randomly increase or decrese by a for $i \in 1$...Number_of_steps sign $\leftarrow 1$ if rnd(1) > 0.5 sign $\leftarrow -1$ otherwise part_j \leftarrow part_j + sign·Step_size + drift $v_j \leftarrow$ part_j Step size increment for each step. We perform this operation until we reach the number of steps value. It is two loops, one to do the stepping for each particle and, an overall loop to march through an "ensemble" of particles. return v 0

tt := Simulate(part) 20 0 m :=Number_of_particles - 50 1 -200 tt is the array of numbers 2 390 calculate the standard deviation tt =3 calculate the mean 60 4 -110 5 260 $\mu_{tt} := \frac{1}{m} \cdot \sum_{j=1}^{m} t_{t_j}$ $\operatorname{sig}_{tt} := \sqrt{\frac{1}{m} \cdot \sum_{j=1}^{m} (t_j - \mu_{tt})^2}$ 6 180 7 70

 $\mu_{tt} = 2.391$ this mean stays around zero $sig_{tt} = 158.888$ this standard deviation grows

 $\alpha := -500, -480 \dots 500 + drift \cdot Number_of_steps$

theoretically we get:

$$P(z, \alpha, \Delta) := \frac{1}{\Delta \cdot m} \cdot \sum_{i=0}^{m} if\left[\left(\alpha - \frac{\Delta}{2}\right) < z_i \le \left(\alpha + \frac{\Delta}{2}\right), 1, 0\right] \\ P_{Gauss}(z, \mu, \sigma) := \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(z-\mu)^2}{2 \cdot \sigma^2}}$$

Shape is Gaussian

Does Diffusion Velocity make sense?

Diffusion constant for a small molecule in water is 10^{-5} cm²/s

$$D_{\text{const}} \coloneqq 10^{-5}$$

Diffusion constant for a small molecule in air is 10⁻¹ cm²/s

distance_diffuse := $1 \cdot 10^{-6}$ 1 micron

time_diffuse(x) :=
$$\frac{x^2}{2 \cdot D_{const}} \cdot 100^2$$

time_diffuse(distance_diffuse) = 5×10^{-4} seconds distance_diffuse2 := $10 \cdot 10^{-6}$ 10 um time_diffuse(distance_diffuse2) = 0.05 seconds distance_diffuse3 := $1 \cdot 10^{-2}$ 1 cm time_diffuse(distance_diffuse3) = 5×10^{4} seconds about 14 hours