Energy/Length Scales in Biology:

Amino Acids Review:

Non-polar side groups: Glycine (gly), Alanine (ala), Valine (val), Leucine (leu), Isoleucine (ile), Methionine (met), Phenylalaline (phe), Proline (pro), Tryptophan (trp)

Uncharged polar side groups: Serine (ser), Threonine (thr), Asparagine (asn), Cysteine (cys), Glutamine (gln), Tyrosine (tyr)

Acidic side groups: Aspartic Acid (asp), Glutamic Acid (glu)

Basic side groups: Lysine (lys), Arginine (arg), Histidine (his)

Useful amino acids: Cys (not very reactive and rare - 1.7% abundant), Gly (small, mobile, 7% abundant), Leu (most abundant -9%), Tryptophan (least abundant -1.3%, best for spectroscopy)

Protein Review:

Primary structure - the sequence of the amino acids.

Secondary structure - local 3D structure formed due to H-bonds. The most common are alpha helices and beta sheets. Alpha helix -3.6 residues/turn, 1.5A/residue, linear distance = 3.6n A

Beta sheet -3.4A/residue

Tertiary structure – the 3D structure of the entire protein

Quarternary structure - arrangement of multiple polymer subunits

Interactions

Covalent: shared electrons. Need to know the wave function to treat properly. Electrostatic:

$$E = \frac{1}{4\pi\varepsilon} \left(\frac{q_1 q_2}{r}\right)$$

q = electron charge = 1.6 x 10⁻¹⁹ C r = separation distance ε = relative permittivity (=80 for water) ε_0 = vacuum permittivity = 8.85 x 10⁻¹² C²/Jm

Energy between a dipole and a point charge: $E = \frac{1}{4\pi\varepsilon_0} \left(\frac{-q_1q_2l}{r^2}\right)$ Energy between a dipole and dipole: $E \propto \frac{1}{x^3}$

H-bonds Van der Waal Hydrophobic

Useful Equations and Relations

Diffusion: $\langle x^2 \rangle = 2Dt$ Einstein-Smulchowski: $Df_{drag} = k_B T$ Reynolds Number: $\text{Re} = \frac{\rho L v}{\mu} = \frac{F_{inertial}}{F_{viscous}}$ (note: for many biological systems, viscous forces dominate) Energy kBT = 4.1 pN nmATP = 20 kBTGlucose = 30 ATPTypical protein: 300 aa, 30 kDa, 34.8 nm³, 4.8 x 10^{-23} kg, 1.38 x 10^{3} kg/m³, radius ~ 2nm Typical stall forces: Myosin: 1-2 pN Biotin: 200 pN Migrating cell: 10 nN RNAp: 25 pN Kinesin: 5-6 pN E. Coli drag force: 0.5 pN

Random Walk Model

Chain with *N* segments of length *b* Contour length (total length of the chain) $L_c = Nb$ r_i is the vector to point *i*: $b = r_i - r_{i-1}$

R is the end-to-end length of the chain: $\vec{R} = \sum \vec{r_i}$

Average end-to-end distance: $\langle \vec{R} \rangle = 0$

Distribution: $\langle \vec{R}^2 \rangle = Nb^2$

Radius of gyration: $\langle \vec{R}^2 \rangle^{\frac{1}{2}} = R = b\sqrt{N}$

Probability of finding the ends of polymer of size *N* at distance *R*:

$$p(R,N) \approx p_{Gaussian} = \left(\frac{d}{2\pi Nb^2}\right)^{d/2} \exp\left(\frac{-dR^2}{2Nb^2}\right); d = \text{dimensionality}$$

Using entropy ($S = k_{\rm B} \ln p$) and energy (G = H-TS), modeling as a spring, and neglecting some constants and higher order

terms:
$$F = \frac{3k_BT}{Nb^2}R \Rightarrow$$
 model breaks down at high R!

Freely Jointed Chain

Similar to random walk, but segments can freely rotate about the joints.

At low force: $F = \frac{3k_BT}{Nb^2}R$ (same as Gaussian/Random Walk)

At high force: $F \rightarrow \infty$ Interpolated at medium forces.

Worm-Like Chain Model

Continuous rope that is flexible everywhere, not only at discrete junctions. Good for modeling double stranded DNA, RNA, and **unfolded** proteins. Persistence length l_p is the distance over which a polymer is relatively "straight":

$$l_p = \frac{b}{2} = \frac{EI}{k_B T}$$
 = rigidity/thermal energy

E = Young's Modulus = stress/strain; I = moment of inertia

$$F \approx \frac{k_B T}{l_p} \left[\frac{1}{4(1 - \frac{x}{L_c})^2} + \frac{x}{L_c} - \frac{1}{4} \right]$$

Boltzmann's constant = $k_b = 1.38 \text{ E} - 23 \text{ J/K}$	
Planck's constant = $h = 6.62 \text{ E} - 34 \text{ J} \cdot \text{s}$	
$\eta_{water} = 0.001 \text{ Pa} \cdot \text{s}$	
Thermodynamics and Statistical Mechanics	
S = $k_b \ln W$; W = # of microstates = $\frac{n!}{(n-k)!k!}$ n = # positions, k = # of things.	
W _{state 1} combined w/state 2= W _{state 1} ·W _{state 2} ; S _{state 1} combined w/state 2= S _{state 1} +S _{state 2}	
Partition Function $Q = \sum_{j} e^{-\varepsilon_j/k_b T}$; $\varepsilon_j = \Delta G$ = Energy of the microstate	
w_i = density of states = # of microstates in a given macrostate	
$-\varepsilon_{\rm c}/k_{\rm b}T$	
$P = \frac{e^{-c_i \cdot n_b}}{m_b}$	
Probability a molecule is in a given microstate $\Gamma_i = \sum_{e_i} e_{e_i} - \varepsilon_j / k_b T$	
or multiply by w_i to get probability a molecule is in a given macrostate	
Energy Landscapes	
Rate = $A \exp\left(\frac{-\Delta G}{k_b T}\right)$; A= frequency factor $\Delta G = \Delta G_0 - F\Delta x$	
$[E_1] \rightarrow \text{avg duration of structural state 1} = \frac{1}{k_{on}} \rightarrow k_{on} = A \exp\left(-\Delta G/k_bT\right) = k_{on}^0 \exp\left(\frac{F\Delta x/k_bT}{k_bT}\right)$	
$\begin{bmatrix} E_1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Evring:	Kramers:
protein relaxes into new state after fast local changes	protein goes through global diffusion into new state
$k_b T$	$\Lambda = \frac{\varepsilon_1}{\gamma}$
$A = \frac{b}{h} = 6E12 \text{ 1/s}$	A = $/\pi\tau_1$; $\tau_1 = \prime/\kappa$ = inctional drag/stimess
Instrumentation	
AFM:	Optical trap:
2 major uses:	3 ways to calibrate:
(1) Imaging (2) material properties (know force and indeptation	(1) Lorentzian roll-off (snifts L for weaker trap)
can find Young's modulus)	(2) Equipartition (3) Stokes drag & $F = k\Lambda r$
Molecular Motors and Single Molecule Measurements	
Types: Rotary (ATP synthase, flagella), linear motors (actin/myosin, kinesin/dynein, RNA polymerase, ribosome) Assays: Kinesin force clamp, stepping, tethered bead assay, paired optical traps	
Polymerization	
$F_{EQ} = \frac{k_b T}{\delta} \ln\left(\frac{[A]}{K_D}\right); \text{ [A]} = \frac{k_{off}}{k_{on}} = K_D \exp\left(\frac{F\delta}{k_b T}\right); \text{ [A]} = \text{monomer concentration}$	
Actin Polymerization: $C_c = \frac{k_{off}^{ADP}}{k_{off}^{ATP}} = \frac{1}{K_{FO}}$	
Brownian ratchet: inhibitor diffuses away from filament end to allow chemical reaction	