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You only need to turn in Problems 2 and 3.  Solutions will be distributed for the 
others. 

True-False 

1. A specimen that continues to creep (deform) under a constant stress, as long as the stress 
is applied, could be modeled as a Kelvin (or Standard Linear Solid) material. 

2. If the applied stress is held constant with time, a purely elastic material will exhibit a 
constant, steady strain. 

3. For a poroelastic material subjected to an oscillatory load at a single frequency, the strain 
is in phase with the applied load. 

4. When subjected to confined compression, a tissue specimen is reduced in volume due to 
the expulsion of liquid through the boundaries. 

5. For unconfined compression of a poroelastic material, the following constitutive law 
applies: 

tot 
�11 = 2G�11 + � �( 11 + �22 + �33 ) � p 

True-False 

1. A specimen that continues to creep (deform) under a constant stress, as long as the stress 
is applied, could be modeled as a Kelvin (or Standard Linear Solid) material. 
False. A Kelvin material will creep to a certain extent, but will eventually reach a new 
equilibrium. 

2. If the applied stress is held constant with time, a purely elastic material will exhibit a 
constant, steady strain. 
True.  A purely elastic material will deform immediately upon the application of stress and 
will change its deformation only when the applied stress changes. 



3. For a poroelastic material subjected to an oscillatory load at a single frequency, the strain 
is in phase with the applied load. 
False. A poroelastic material, like a viscoelastic material, is dissipative so that the load 
will lead the deformation. 

4. When subjected to confined compression, a tissue specimen is reduced in volume due to 
the expulsion of liquid through the boundaries. 
True.  In confined compression, the upper boundary is usually porous and interstitial fluid 
will leak out. 

5. For unconfined compression of a poroelastic material, the following constitutive law 
applies: 

�11 = 2G�11 + � �( 11 + �22 + �33 ) � p 

True.  The only difference between this expression and that for an elastic material is the 
addition of the fluid pressure, p. 

Problem 1:    Linear, isotropic, homogeneous, poroelastic material 

Consider a Poroelastic tissue specimen subjected to confined compression. 

In class we demonstrated that the displacement u1(x1,t) is described by a partial 
differential equation having the form of a diffusion equation with equivalent “diffusivity” 
equal to Hk, the product of the confined compression modulus H = (2G + �) and the 

hydraulic permeability k. 

(a) Derive an analogous diffusion equation that describes the spatial and temporal 

dependence of the fluid pressure p.  What is the equivalent “diffusivity”? 
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(b) A step in displacement is applied at x1 = 0 having amplitude u0. State the boundary 

conditions on u1(x1=0,t) and u1(x1=L,t) and the initial condition u1(x1,t=0) that would be 

used to solve for the displacement u1(x1,t) occurring during this “stress relaxation”. (Do 

not solve.) 

(c) A step in stress is applied at x1 = 0 of amplitude �0.  State the boundary conditions on 

the displacement (or its slope) and the initial condition on u1(x1,t=0) that would be used 

to solve for the creep displacement u1(x1,t). (Do not solve.) 

(d) For the stress relaxation example of part (b), the solution below was provided in one 

of the slides from class.  Use that solution to show (1) that the higher frequency 

components of the solution decay more rapidly with time, and (2) that the displacement is 

a linear function of x1 as t �� . What is the expression for the slowest (“n=1”) decay 

time; i.e., the stress relaxation time, in terms of material and geometric constants? 
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Problem 2: Measuring H and k 

You wish to perform a simple set of experiments on a sample of cartilage to 
obtain values for the hydraulic permeability k and confined compression modulus H 
using an apparatus of the type shown in the sketch.  The sample is placed into a 
compression chamber with rigid, non-permeable sides and bottom.  On top of the sample 
is placed a permeable but rigid platen to which a vertical force can be applied. 

For this problem, design an appropriate experiment or set of experiments that will 
allow you to compute individual values for k and H.  You may specify either a time-
varying (or static) force or displacement for the upper platen.  Assume that all 
displacements are purely uni-directional (in the x1-direction), that the sample has 
homogeneous properties, and that it satisfies the following expressions derived in class:
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where U  is the x1-component of velocity, u1 is displacement of the cartilage matrix, p is
1

hydrostatic pressure, and �1 
tot  is total stress. 

There is no single correct answer to this problem; there are a variety of schemes 
that will work.  All you need to do is describe one experimental procedure, and then 
provide the appropriate analysis indicating how H and k are to be computed from the 
experimental measurements. 

Problem 3:  Arterial wall poroelasticity 

As the wall of an artery expands and contracts due to arterial pressure variations, there is 
a tendency for fluid to be periodically drawn into and expelled from the tissue comprising 
the wall.  In this problem, you will model the arterial wall as a poroelastic material and 
analyze this fluid motion.  This is of special interest in the context of arterial disease 
since this represents one method by which lipids normally found in the blood plasma 
might enter the arterial wall where they could react with extracellular matrix proteins and 
form the nucleus for lipid aggregation (see e.g., Yin et al., A model for the initiation and 
growth of extracellular lipid liposomes in arterial intima. Am J Physiol. 1997 Feb;272(2 
Pt 2):H1033-46.). 

Assume here that:  

•	 the wall is thin compared to the radius of the artery, so that you can treat the wall 
locally as though it were a flat plate.  With this assumption, the change in vessel 



circumference with time can be expressed in terms of a time-varying value of �11 

= �0sin(�t) (see Fig. 1). 

•	 since the total length of the arterial segment does not change during a cardiac 

cycle, you may assume that �33 = 0.  Consequently, there will be a tendency for 

�22 to vary with time.  Note that this does not imply that �33 = 0. 

•	 the bottom surface is impermeable, so that all the fluid inflow and outflow occurs 

through the top surface (x2 = h).  The top surface can be assumed to be exposed to 

a constant pressure p = 0 for all times, so that the fluid flow into and out of the 

arterial wall is driven entirely by the imposed time varying strain �11. 
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x2 

x1 
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a) First consider the tissue to be a homogeneous, isotropic, incompressible (� = 0.5) and 
linearly elastic (not poroelastic) material, and obtain expressions for �22(x2,t) and u2(x2,t). 

Note, in particular, whether or not �22 depends upon x2. 

b) Now treat the tissue as a poroelastic rather than an elastic material, with known values 

for the shear modulus G and Lame’ constant �. Show that u2 satisfies the following 

relationship: 

2
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(which is the same as that which governs one-dimensional confined compression) where 

H = 2G+� and k is the hydraulic permeability. 

c) Consider the limit of � �� and obtain an expression for u2(x2,t). (Hint: Think in 

physical terms what happens in this limiting case, and do not simply set �u2 / �t  to zero!) 

d) Consider the limit of � � 0 and obtain an expression for u2(x2,t). (Hint: What 

boundary condition must be satisfied at x2 = h?) 



e) What are the two boundary conditions needed to solve the equation you obtained in 

(b)?  Sketch (but do not solve) the solution u2(x2,t) for the intermediate case, when � is 

neither very large nor very small. 

Problem 4:  Permeability measurements (from recitation) 

This problem emphasizes a general issue concerning the measurement of hydraulic 

permeability of hydrated soft tissues and other poroelastic media: applied pressure 

gradients and the resulting fluid flow can cause consolidation or deformation of the 

tissue.  This might give rise to a nonlinear permeability that may ultimately be important 

to include in a model. 
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A cylindrical disk of porous, hydrated tissue has thickness d and diameter D, and is held 

within a chamber that confines the disk at its radial periphery. The tissue is supported by 

a rigid, porous filter located at the position z = 0. A constant pressure drop P0 is applied 

across the tissue from left to right, resulting in a constant fluid flow velocity U0 with 

respect to the tissue (the rigid filter prevents the tissue from moving, but does not 

impeded fluid flow). 

The applied pressure drop and resulting fluid flow cause a compression of the tissue 

against the rigid filter.  You are to find the resulting steady state, z-dependent strain and 

displacement profiles using the 1-dimensional poroelastic model for tissue derived in 

class. 

(a) As done in class, write expressions for (1) conservation of momentum, (2) Darcy’s 

law, and (3) total stress versus strain (including hydrostatic pressure) in terms of the total 

stress �zz, strain �zz, displacement uz, and pressure p. 

The fourth equation, mass conservation, is given here as: 
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where the term U0 corresponds to the possibility of a constant flow of fluid even when 

�uz /�t = 0, as is the case here. 

(b) Combine your equations (1)-(3) with the above equation to find the differential 

equation for uz in terms of the constant velocity U0, the hydraulic permeability k, and the 

confined compression modulus H = (2G + �). 

(c) For the case of steady flow (� /�t = 0), integrate your differential equation to find an 

expression for the displacement uz in terms of two integration constants. Find the two 

constants from the boundary conditions: 

(i) zero displacement at z = 0 

(ii) zero strain (�uz /�z ) at z = -d 

(d) Write your final expressions for uz(z) and �zz(z) within the tissue.  Sketch uz and �zz as 

functions of z within the tissue (-d<z<0). 


