
1

Fall 2004 6.831 UI Design and Implementation 1

Lecture 10: Constraints and Layout

2

Fall 2004 6.831 UI Design and Implementation 2

UI Hall of Fame or Shame?

Suggested by Vishy Venugopalan

To see this page, go to

http://www.moma.org/exhibitions/2001/workspheres/swfs/workspheres.html

This Flash-driven web site is the Museum of Modern Art’s Workspheres exhibition, a

collection of objects related to the modern workplace. This is its main menu: an array of

identical icons. Mousing over any icon makes its label appear (the yellow note shown), and

clicking brings up a picture of the object.

Clearly there’s a metaphor in play here: the interface represents a wall covered with Post-it

notes, and you can zoom in on any one of them.

We can praise this site for at least one reason: incredible simplicity. The designer of this

site was clearly striving for aesthetic appeal. Nothing unnecessary was included. Note the

use of whitespace to group the list of categories on the right, and the simple heading

highlight that gives a clue to the function of the list (clicking on a category name highlights

all the icons in that category).

Unfortunately, too much that was necessary was left out. Without any visible

differentiation between the icons, finding something requires a lot of mouse waving.

“Mystery navigation” was the term used by Vishy Venugopalan, who nominated this

candidate for the UI Hall of Shame. It’s hard enough to skim the display for interesting

objects to look at. But imagine trying to find an object you’ve seen before. It’s like that old

card game Concentration, demanding too much recall from the user, rather than offering

easy opportunities to recognize what you’re looking for.

Frankly, if real Post-it notes were arranged on a wall like this, you’d probably have just as

much trouble navigating it. So the choice of metaphor may be the essence of the problem.

http://www.moma.org/exhibitions/2001/workspheres/swfs/workspheres.html

3

Fall 2004 6.831 UI Design and Implementation 3

More “Mystery Navigation”

Suggested by Adam Champy

To see this page, go to
http://www.movado.com/

This is the home page for Movado, a company that makes expensive, stylish watches. The

little white dots at the top of the window are menu options. If you watched the opening

animation that precedes this screen, you’d see each menu label appear briefly over each dot.

But if you skipped over the intro, you wouldn’t see that, and you may not even realize that a

menu is hiding up there under those stylish white dots.

When you mouse over a dot, you actually have to wait for a cute little animation (a watch

hand sweeping around the dot) before the menu label appears. Each little animation takes 2

seconds. So scanning the entire menu to look at all the options takes 16 seconds!

Clearly this is even worse than MOMA’s approach, since it starts with an invisible menu

interface and makes it inefficient to boot. More tellingly, MOMA only cares about your

eyeballs, but Movado actually wants to sell you a watch. If you can’t figure out their menu,

or lose patience with it, you may be headed elsewhere.

http://www.movado.com/

4

Fall 2004 6.831 UI Design and Implementation 4

Let’s Play a Menu Game

Suggested by Anson Tsai

To see this page, go to
http://www.bonsaietc.com/BEtcSiteSearchEngine_Frame.htm

Here’s our last entry: Bonsai Etc, a website that sells bonsai trees and equipment. In this

site’s Flash animation, the menu options move: some horizontally, some vertically. Worst

of all, their paths overlap, so the items pass each other on the screen. At least they’re

labeled. It’s a fun game, for a little while. But if you have a serious reason for visiting this

web site – say, spending some money – do you really want to chase down every menu

option you want to click?

One lesson you might draw from these examples is that Flash animation is bad, but that’s

too simplistic. Flash is a powerful tool that can be used for good or ill.

A better lesson might be that aesthetic appeal does not automatically confer usability.

Effective graphic design is an important element of usability, but it isn’t the whole story by

any means.

http://www.bonsaietc.com/BEtcSiteSearchEngine_Frame.htm

5

Fall 2004 6.831 UI Design and Implementation 5

Today’s Topics

• Automatic layout

• Constraints

6

Fall 2004 6.831 UI Design and Implementation 6

Layout

• Determining the positions and sizes of

graphical objects

7

Fall 2004 6.831 UI Design and Implementation 7

Layout Ranges in Difficulty

• Fixed constants
– Many Windows dialog boxes

• Directly computable from model
– Checkerboard from PS2/PS3

• One pass algorithm
– Java layout managers, HTML tables

• Dynamic programming
– paragraph flow with hyphenation

• Nonlinear optimization
• NP-hard
– Graph with fewest edge crossings

8

Fall 2004 6.831 UI Design and Implementation 8

Reasons to Do Layout Automatically

• Window resizing

• Screen resolution

• Font changes

• Widget changes

• Internationalization

9

Fall 2004 6.831 UI Design and Implementation 9

Layout Managers

• Also called geometry managers (Tk,

Motif)

• Abstract

–Represents a bundle of constraint

equations

• Local

– Involve only the children of one container

in the view hierarchy

10

Fall 2004 6.831 UI Design and Implementation 10

Layout Propagation Algorithm

• layout(Container parent, Rectangle

parentSize)

– for each child in parent,

• get child’s size request

– apply layout constraints to fit children into

parentSize

– for each child,

• set child’s size and position

11

Fall 2004 6.831 UI Design and Implementation 11

Kinds of Layout Managers

• Packing

– one dimensional

– Tk: pack

– Java: BorderLayout, FlowLayout, BoxLayout

• Gridding

– two dimensional

– Tk: grid

– Java: GridLayout, GridBagLayout, TableLayout

• General

– Java: SpringLayout

12

Fall 2004 6.831 UI Design and Implementation 12

Important Concepts

• Anchoring

• Expanding vs. padding

• Invisible components

–Struts

–Glue

–Springs

• Nested containers

13

Fall 2004 6.831 UI Design and Implementation 13

Hints for Layout

• Use packing layouts when alignments

are 1D

– borders for top-level

– nested boxes for internal

• Reserve gridding layouts for 2D

alignment

– unfortunately common when fields have

captions!

–TableLayout is easier than GridBag

14

Fall 2004 6.831 UI Design and Implementation 14

Constraints

• Constraint: relationship expressed by the
programmer and automatically maintained by
the UI toolkit

• Uses
– Layout
• field.left = label.right + 10

– Value propagation
• deleteAction.enabled = (selection != null)

– Synchronization of views to models

– Interaction
• rect.corner = mouse

15

Fall 2004 6.831 UI Design and Implementation 15

One-Way Constraints

• Also called formulas, after spreadsheet
– y = f(x1, x2, x3, …)

– Y depends on (points to) x1, x2, x3, …

• Algorithms
– Data-driven
• Reevaluate formulas when a value is changed

– Demand-driven
• Reevaluate formulas whenever a value is requested

– Lazy
• When dependent value changes, invalidate all values

that depend on it

• When invalid value is requested, recalculate it

16

Fall 2004 6.831 UI Design and Implementation 16

Variants

• Multi-output formulas

– (y1, y2, …) = f (x1, x2, x3, …)

• Cyclic dependencies

– Detect cycles and break them

• Constraint hierarchies

– Some constraints stronger than others

• Side effects

– If f has side effects, when do they happen?

• Lazy evaluation makes side effects unpredictable

– Amulet: eager evaluation

17

Fall 2004 6.831 UI Design and Implementation 17

Multiway Constraints

• Each constraint is a multivariate

relationship

– rect.right = rect.left + rect.width – 1

–Any variable may be used as target

(different method for each target variable)

–Planning step decides which variables to
target

18

Fall 2004 6.831 UI Design and Implementation 18

Variants

• Constraint hierarchy

–Which value should be changed?

–Each constraint has a priority

– “Stay” constraints (highest priority) are
used for constants

• Inequalities

– Label.right <= field.left

