6.897: Advanced Topics in Cryptography Feb 5, 2004

Lecture 1,2: Universal Composability

Lecturer: Ran Canetti Scribed by: Yoav Yerushalmi and Steve Weis

1 Handouts

There were two handouts: handout #1 was General Information, and handout #2 was the
planned lecture schedule until spring break.

2 Administrivia

The first half of the course will be taught by Ran Canetti, and will cover topics related
to Security-Preserving Composability (see handout 2 for tentative schedule of lectures).
The second half, starting after spring break, will be taught by Ron Rivest, and will cover
varying topics including voting protocols, extractors, public-key infrastructure, and digital
signatures.

There are some very good slides of the lecture which cover much the same material as
is in these notes.

3 Overview

In the first half of the course, we will be covering the basic foundations of cryptographic
protocols. Our goals are to provide some theoretical foundations of what it means to be
a secure cryptographic protocol, including what it means to be secure in general. We will
see how to preserve security when protocols are combined, and we will see some basic
constructions of protocols whose security is preserved through composition.

The class will have an overall definitional and foundational slant, and will be less focused
on in-depth proofs. We would like to be able to define what it is we want from a protocol,
and figuring out what it is we need to prove about them. It will stress much more the
conceptual points and considerations, and will not be very concerned with technical details.

4 Definition of Security

An important question to ask when trying to define security for a given task is “What do
we want from our definition”?
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e It should be mathematically rigorous. It should be well-defined how the system works
and is modeled, so that we can then determine how to model a protocol, and if a given
modeling of a protocol fits within our definition or does not.

e It should provide a convenient abstraction (primitive) that matches our intuition for
the task.

e Our definition should capture “all realistic attacks” in the expected execution envi-
ronment.

— What are our network characteristics? (synchronous/asynchronous, reliable,
etc.).

— What power does the attacker have? (can he control protocol participants? can
he control the network links? can he inject data or merely listen? etc.)

— What are the possible inputs to the system, including exception conditions.
— What other protocols are (or might be) running in the same system, and how

can the protocols interact.

e It should guarantee security even if the primitive is used elsewhere (for example,
as a subroutine of another protocol). That is, it should maintain security under
composition.

e It should not be overly restrictive.

e We need to base it on the functionality of the candidate protocol, and not on the
structure of the protocol.

e It would also be nice if our framework was able to support multiple tasks, and was
both conceptually and technically simple.

It’s clear that the security requirement and composability are intertwined, leading us to
include a notion of “secure composability” in the basic desiderata.

5 First Candidate : Multiparty Secure Function Evaluation

To demonstrate these points we investigate the “classic” task of secure multiparty function
evaluation. The basic concept is that we have multiple people, each with their own private
value, who are trying to compute some function on those values, without leaking anything
other than the result of the function. More specifically, we have:

e n parties (p1,p2,...,pn) with n > 1, where each p; has an input z; € D. Some parties
may be corrupted. We will assume that the corruptions happen in the beginning
(static corruptions).

e We have a probabilistic function f : D" x R = D"

e We have a communications network that allows participants to send messages to each
other.
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We want a secure protocol where at the end, each participant p; has a value f(z1,...,Zn,7);
. We want to ensure:

Correctness : All honest participants get a correct evaluation of the function.

Secrecy : All corrupted parties learn nothing more than what they knew before, plus
their prescribed outputs.

Here are some example functions to illustrate:

e F(x1,...,2p) =21+ ...+ xy
a simple sum function. (All parties get the same value)

o F(z1,...,2p) = MAX(z1,...,2,)
a max-value function.

o F(—,...,—)=r<yD
a simple coin toss function. Here the main requirement is that the output remains
unbiased in spite of malicious behavior.

b F((l‘(),.’l?l),b) = (_a (xb; b €r 0, 1))
This is 1-of-2 oblivious transfer. Party 2 learns one of two values that party 1 had,
and party 1 doesn’t know which value party 2 learned.

o Fr((z,w),—) = (-, (z, R(z,w))) where R(z,w) is a binary relation.
This is a modelling of Zero-Knowledge (we have correctness and soundness). This is
also a proof of knowledge of a witness.

6 Formalizing

We would like to be able to formalize our requirements for correctness and secrecy.

6.1 Correctness

We have a difficulty in deciding how the function should be compute in the case of the
corrupt parties.

e if we require that f is computed on input values fixed at the start, then we have an
unrealizable definition. A corrupt party might simply choose to replace its input with
another value, and there is no way for the party computation to account for its pre-set
value.

o If we allow the corrupt party to “choose” its input, then we have a problem. Specif-
ically, imagine a protocol for computing the sum of all inputs. Lets use two parties:
Party one sends its secret input to party two, who replies with the sum of both. While
this protocol is both “correct” and “secret”, we would not call this protocol secure,
since party 2 has full control of the result.

We need an “input independence” property, which unites secrecy and correctness.
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6.2 Secrecy

Similarly, we would like to define secrecy. One possible attempt is the following: “It should
be possible to generate the view of the corrupted parties given only their inputs and pre-
scribed outputs”.

However, the following counter-example demonstrates a flaw:

e Function: F(—,—) = (r <y D, —) . That is party 1 gets a random bit, and party two
gets nothing.

e Protocol: P; chooses r <y D and sends r to P;.

As is pretty obvious, this protocol is not secret (since P, learns r). Yet, it is possible to
generate P»’s view (it is just a random bit).

We need to consider the outputs of the corrupted parties together with the outputs of
the uncorrupted parties. This forces correctness and secrecy to be combined.

7 General Definitional Approach

We will use the following definitional paradigm of a secure protocol [GMW87]

Posit 1 A protocol is secure for some task if it “emulates” an “ideal setting” where partic-
ipants hand their inputs to a “trusted party” who locally computes the desired outputs and
hands them back to the participants.

Several formalizations of this idea exists (Goldwasser-Levin90 [GL90], Micali-Rogaway91 [MR91],
Beaver91 [B91], Pfitzmann-Waidner94 [PW94], Canetti00 [Canetti00], Dodis-Micali00 [DMO00],
...). We will use the definition of Ran Canetti’s [Canetti00]. Plan:

e Describe the model for protocol execution (“real-life model”)
e Describe the “ideal process” using a trusted party
e Describe a notion of “emulating” the ideal process without the trusted party.

In class, we will discuss the definition in the case of a synchronous network with both
active (byzantine) and static (non-adaptive) adversaries. We will rely on computational
security (requiring that our adversary and the “distinguisher” are poly-time limited). Our
network will provide authenticated, but not secret, communication.

8 Definitions, Notations, and other Preliminaries

Definition 1 A distribution ensemble D = {D;,} ; k€ Nya € {0,1}* is a sequence
of distributions, one for each value of k,a. We will only consider binary ensembles (where
each Dy, 4 is over {0,1}).

Once we have ensembles, we can define relationships between ensembles:

Equality : D=D" <= Vk,a : Dy, =D},
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Statistical Closeness : D ~ D' <= Vc,d > 0 3k s.t. Vk > ko,Va |a| < k¢ :

[Prchk,a [:L' = 1] - Prz<:D;ca[w = 1] <k™°

Now we define a multiparty function in a way that allows the adversary to provide it
own input and receive its own output:

Definition 2 An n-party function is a function f : N x R x ({0,1}*)"*! = ({0, 1}*)"+!

Definition 3 An interactive turing machine (ITM) is a turing machine with special-
purpose tapes:

e The standard computation tape

o The incoming communication tape. Data is written on this tape by other ITMs in an
append-only fashion. It is known what ITM wrote the data on the tape.

e The incoming subroutine output tape is a tape used for receiving inputs from subrou-
tines (other ITMs).

o The identity tape. This holds a static value that the ITM can use to identify itself
(each ITM has a different value).

o The security parameter tape. A read-only tape containing the security parameter.
o A random tape containing random bits.

o The output tape which is where the ITM writes its final result in the computation
before halting.

An ITM is “activated” whereupon it runs some computations, reads and writes to/from
tapes, and then goes into either a waiting or a halted state. We will consider poly-time
ITMs, which are ITMs where the overall number of steps taken is polynomial in the security
parameter plus the overall input tape length.

Definition 4 a system of interacting ITMs is a set of ITMs (fized number), plus a set of
write-permission rules (which ITM can write to what other ITMs’ communication tapes).
a run of a system (My, ..., My,) is:

o An initial ITM My which starts with some external input

e In each activation an ITM may write to the communication tapes of other ITMs IF
the permissions allow it.

o All ITMs whose tapes are written to during an activation are appended to an activation
queue. When the currently activated ITM enters a waiting state, the next ITM on the
queue is activated.

o The output of the system is the final output of the initial ITM M.
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9 “Real-Life Model” for Protocol Execution

We define a “real-life” model for protocol execution that will help encompass our security
and correctness requirements. This model has the following participants:

e An n-party protocol P = (P,...,P,), for n > 1, where each P; is an ITM.

e An adversary A, controlling a set of “bad parties” B C P. The adversary gets to run
arbitrary code on the “bad parties”.

e The environment Z. The environment is modeled as an initial ITM which starts with
some external input.

The parties, P, A and Z interact by the following computational process:

e The environment Z receives external input z.

e 7 gives input a to the adversary A and the input z; to each P;.

While any party P is active:

— Good parties, i.e. P — B, generate messages for the current round.

— The adversary A monitors all messages and generates messages for the bad parties
B.

— The adversary A delivers all messages generated by the good parties.

Prior to halting, all parties P and A send their outputs to Z.

Z generates an output bit b € {0, 1}.

There are a couple caveats with this model. First is that messages are authenticated,
so the adversary cannot spoof legitimate good party messages. The adversary must also
deliver messages in their proper rounds. It is not allowed to deliver future messages before
an old round completes. Finally, “honest, but curious” parties are still considered to be
“bad”.

We introduce some notation for this model:

o EXECpa,z(k,r z): Output of Z on input z, randomness r and security parameter
k after interacting with A and P.

e EXECpa,z(k,z): Output of Z on input z and security parameter k after interacting
with A and P over uniform randomness.

e EXECpa,z: The ensemble of distributions {EXECp 4 z(k,z)} with k¥ € N and
z € {0,1}*.
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10 The Ideal Process for Evaluation of f

We define another system of interacting ITMs to help model the computation of an arbitrary
function f:

e A set of n “dummy parties”, P = (P,...,P,), for n > 1.
e An adversary S, controlling a set of “bad parties” B C P.
e The environment Z.
e A “trusted third party” F for evaluating f.

These parties interact by the following computational process:
e 7 receives external input z.

e 7 gives input a to the adversary S and the input z; to each good party P;.

Good parties, P — B, hand their inputs to F'.

Bad parties, B, send whatever S tells them to F. S also sends its own input to F.

F evaluates f and distributes the output to P and S.

Good parties output the value they received from F' and bad parties output whatever
S tells them to output.

e S and P write their outputs to Z’s output tape.

e Z generates an output bit b € {0, 1}.
We use the following notation for this model:

o ] DEALQ 4(k,r,2): Output of Z on input z, randomness r and security parameter &
after interacting with F' and S.

o] DEAL{; 4 (k,z): Output of Z on input z and security parameter k after interacting
with F' and S over uniform randomness.

. IDEALQZ: The distribution ensemble {IDEALéyZ(k, z)} withk € Nand z € {0,1}*.

11 B-Secure Definition, Implications and Variants

Let B be a collection of subsets of {1,n}. An adversary is B-limited if the set B of parties
it corrupts is in B.

Definition 5 Protocol P B-emulates the ideal process for f if for any B-limited adversary
A there exists an adversary S such that for all Z we have:

IDEAL} , ~ EXECp 4z
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We say that a protocol “B-securely realizes f” if it meets the above definition. This
definition essentially means that Z cannot tell with more than a negligible probability
whether it is interacting with A and real parties running P, or with S and the ideal process
for f. Another way to say this is that whatever damage A can do to the parties running
the protocol can also be done in the ideal process.

This definition implies: (1) Correctness - for all inputs, the good parties output the
“correct function value, (2) Secrecy - whatever A computes can be computed given only the
prescribed outputs, and (3) Input independence - Bad party inputs are chosen independently
of the inputs of the good parties.

One question is what happens if you have an adversary that does not send its output to
the environment’s output tape. This isn’t an issue because the definition is quantified over
all adversaries.

There are several other equivalent formulations. For example, Z can output an arbitrary
string (rather than one bit) and two executions will still be indistinguishable. Z and A can
also be deterministic or we can change the order of quantifiers; S can depend on Z rather
than vice versa.

There are many possible variants of these models:

e Passive Adversaries: Semi-honest corrupted parties continue to run the original pro-
tocol.

e Secure channels vs. Unauthenticated channels

e Unconditional Security: Allow Z and A to be computationally unbounded. (Except
S need to remain polynomial in Z, A, P.)

e Perfect Security: Z’s outputs in the two runs should be identically distributed.

e Adaptive Security: Both A and S can corrupt parties as the computation proceeds.
Z learns about corruptions.

12 Protocol Composition

So far we have modeled only “stand-alone” security. This entails only a single execution
of a single protocol on a network with no other parties or network activity. Clearly, this
model does not account for many of the complexities of the real world. We consider what
happens when secure protocols run in conjunction with other protocol executions.

There are several forms of running “in conjunction”. It may be other executions of the
same protocol, executions of other protocols, “intended” or coordinated executions, and
finally “unintended” uncoordinated executions.

We must ask whether security is maintained in composition, particularly the following
examples:

e Running the same protocol with same/different inputs, with same/different parties,
in a serial, parallel or concurrent fashion.
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e “Subroutine Composition” (or Modular Composition), where a protocol @ calls a
protocol P as a subroutine. These may either be non-concurrent or concurrent.

e General Composition, which allows running arbitrary protocols in the same system
without coordination.

13 Modular Composition

The model of composition we will examine is modular composition. Here we will formalize
the non-concurrent case. (Concurrent modular composition will be treated later in the
course.) The general idea is to model a call to a common, trusted subroutine f during
the execution of a protocol () as the execution of another protocol P. To help model this
interaction, we will define a “f-Hybrid Model” protocol:

e Start with a “real-life” model protocol.
e Allow parties to have access to a trusted party F' which evaluates f:

— At pre-defined rounds, the protocol instructs all parties to send their values to
F.

— F evaluates f on the given inputs and returns outputs to the parties.

— Once the outputs are obtained, the parties continue as usual.

e Notation: EX EC};} g,z 18 the ensemble describing the output of Z after interacting
with the protocol P and adversary H in the f-Hybrid model.

e Notes: In the “ideal call rounds”, no other computation takes place. We can also
model each “ideal call round” as evaluating a different function, although this doesn’t
add any real power.

We will now look at the composition operation, which originated in [MR91]. First we
start with a protocol ) in the f-Hybrid model and a protocol P that securely realizes f. We
construct the composition protocol Q¥ such that each call to f is replaced by an invocation
of P whose output is treated as the output of f.

There are a couple of caveats to this definition. First, only one protocol is active at a
time. When P is running, @) is suspended. It is also important that all parties terminate
P in the same round. Finally, if P is a protocol in the “real-life” model, so is Q. If P is a
protocol in the f’-hybrid model for some f’, then so is Q.

Theorem 1 Protocol Q¥ “emulates” protocol Q. That is, for any B-limited adversary A,
there is a B-limited adversary H such that for any any Z we have:

EXEC) y ; ~ EXECqo a2

Corollary 1 If protocol Q t-securely realizes function f" in the f-hybrid model, then protocol
QF t-securely realized f" in the real-life model.

The proof of this theorem will be offered in the next lecture.m
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