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Introduction 

Today is our last lecture. We will use the time available to survey a variety of 
applications for non-classical light: binary optical communication with squeezed-state 
light; squeezed-state interferometry; super-dense coding; and quantum lithography. 
The squeezed-state applications exploit the signal-to-noise ratio advantage that such 
non-classical states enjoy in comparison with what is achievable with coherent-state 
light. Super-dense coding and quantum lithography rely on entangled photons to 
derive their advantages. Readers who were overwhelmed by the complexity of the 
continuous-time analyses that we performed in Lectures 21 and 22 should be happy 
that today’s treatments will involve at most two modes at a time. Furthermore, 
for simplicity, we will only consider idealized lossless conditions in all our examples. 
We have seen—e.g., in our study of the squeezed-state waveguide tap—that loss can 
have a disastrous effect on the performance gain afforded by non-classical light. Thus 
today’s material must not be regarded as the final word on the utility of non-classical 
light in these applications. 

Binary Optical Communication with Squeezed-State Light 

Slide 3 shows a simple binary, phase-shift keyed optical communication system that 
uses a coherent-state transmitter. The transmitter mode, âe−jω0t/

√
T for 0 ≤ t ≤ T , 

is put into the coherent state |ψm� to encode a single message bit, m = 0 or 1, where 

for m = 0 −
√
N�, 

|ψm� = 
|

|
√
N�, for m = 1. 

(1) 

That this modulation should be called phase-shift keying is self-evident; the only dif
ference between |ψ0� and |ψ1� is the π rad phase shift in the coherent-state eigenvalue. 
We shall assume that the message values m = 0 and 1 are equally likely to occur, and 
that the receiver employs the quantum measurement which minimizes the probability 
that its decoded bit value, m̃ = 0 or 1, differs from what was transmitted.1 As noted 
in the introduction, we will assume a lossless channel, so that the receiver’s quantum 
measurement is made on the âe−jω0t/

√
T mode which was excited by the transmitter. 

The results that we need to determine the optimum quantum receiver and its error 
probability were already derived on Problem Set 8. However, we will develop some 
of them here anew in a more general setting. 

Suppose that the receiver is confronted with the task of deciding whether the 
state of the mode associated with the annihilation operator â is given by the density 

1Note that we are forcing our receiver to make a decision, i.e., we are not allowing it to make a 
measurement and, depending on its outcome, say that the data was too noisy to decide without error. 
See Problem Set 8 for an example of that unambiguous detection approach to binary hypothesis 
testing. 
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operator ρ̂0 (corresponding to m = 0), or the density operator ρ̂1 (corresponding 
m = 1). Assume that the receiver measures the POVM Π̂0, Π̂1, where 

Π̂† = Π̂m, for m = 0, 1 (2) m 

�ψ|Π̂m|ψ� ≥ 0, for m = 0, 1 and all |ψ� (3) 

Π̂0 + Π̂1 = I, ˆ where Î is the identity operator, (4) 

so that the conditional probability that the receiver decides m̃ = k given m = l is 

Pr( m̃ = k | m = l ) = tr( Π̂kρ̂l), for k = 0, 1 and l = 0, 1. (5) 

Our tasks, therefore, are to choose the POVM to minimize the error probability and 
then evaluate that optimal performance. These turn out to be straightforward, as we 
will now show. 

The error probability for the preceding receiver satisifies 

Pr(e) ≡ Pr( ̃m �= m) = Pr(m = 0) Pr( m̃ = 1 | m = 0 )+Pr(m = 1) Pr( ̃m = 0 | m = 1 ). 
(6) 

For equally-likely messages and the receiver we have assumed this result reduces to 

Pr(e) = 
1
tr(Π̂1ρ̂0) + 

1
tr(Π̂0ρ̂1). (7) 

2 2

Using the completeness relation for the POVM, we get 

1 − tr[Π̂1(ρ̂1 − ρ̂0)]
Pr(e) = . (8) 

2 

The density operator difference, Δρ̂ ≡ ρ̂1 − ρ̂0, is Hermitian. Moreover, it has zero 
trace, i.e., 

tr(Δρ̂) = tr(ρ̂1) − tr(ρ̂0) = 1 − 1 = 0. (9) 

Thus, its eigenvalue-eigenket decomposition can be cast in the following form, 

ρ(+) ρ(+) ��ρ(+) Δρ̂ = n | n n | + ρn 
(−)|ρn 

(−)��ρn 
(−)|, (10) 

n n 

(+) (−)
where the {ρn } are its non-negative eigenvalues, the {ρn } are its negative eigen

values, and {|ρ(+) 
n �, |ρ(

n
−)�} are its complete orthonormal eigenkets. From Eqs. (8) and 

(10) we immediately find that 

1 � � 
ρ(+) �ρ(+) ˆ ρ(+) ρ(−) ˆ ρ(−)Pr(e) = 

2 
1 − n n |Π1| n � − n �ρn 

(−)|Π1| n � . (11) 
n n 

3 



� � 

Now, because Π̂1 is a positive semidefinite operator and because of the algebraic signs 
(+) (−)

of the {ρn } and {ρn }, we see that 

1 � 
Pr(e) ≥ 1 − ρ(+) 

n , (12) 
2 

n 

(+) 
with equality when Π̂1 is the projector for the subspace spanned by the {|ρn �}, i.e., 
the non-negative eigenspace of Δρ̂. At optimality, Π̂0 is therefore the projector for 
the subspace spanned by the {|ρ(

n
−)�}, viz., the negative eigenspace of Δρ̂. Slide 3 

shows an alternative form for this receiver, in which the observable Δρ̂ is measured, 
yielding a classical outcome Δρ which is one of the Δρ̂ eigenvalues, and then m̃ is 
chosen in accordance with the decision rule, 

m̃=1 

Δρ 
≥ 

0. (13) 
< 

m̃=0 

The reader should verify that this receiver is indeed equivalent to the POVM receiver 
given above. 

For binary phase-shift keying with coherent-state signals, the conditional density 
operators are pure-state projectors, 

ρ̂0 = | −
√
N��−

√
N | and ρ̂1 = |

√
N��

√
N |. (14) 

The optimum receiver and its error probability can be computed from the general 
results we derived in the preceding paragraph, but it is simpler just to employ the 
work we did on Problem Set 8 to show that 

Pr(e)CS = 
2

1� 
1 − 

� 
1 − |�ψ0|ψ1�|2 

� 
= 

2

1 
� 

1 − 
� 

1 − |�−
√
N |
√
N�|2 

� 

(15) 

1� � � e−4N


= 
2

1 − 1 − e−4N ≈ 
4 

, for N � 1. (16)


Now let us reconsider binary phase-shift keying when we use squeezed states in
stead of coherent states. In this case the message states will be 

|ψ0� = | − β; µ, ν� and |ψ1� = |β; µ, ν�, (17) 

respectively, where β, µ, ν will all be assumed to be positive real. For a fair comparison 
between the error probability achieved with optimum quantum reception of these 
squeezed-state signals and what we have already shown for the coherent-state case, 
we will require that both signal sets use the same average photon number, N , for 
their message transmission. In the squeezed-state case this means we require 

�(−1)m+1β; µ, ν|â†â|(−1)m+1β; µ, ν� = [(µ − ν)β]2 + ν2 = N, for m = 0, 1, (18) 
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to match 
�(−1)m+1

√
N |â†â|(−1)m+1

√
N� = N, for m = 0, 1, (19) 

for the coherent-state case. 
From Problem Set 8 we have that 

1� � � 1� � � 
Pr(e)SS = 

2
1 − 1 − |�ψ0|ψ1�|2 =

2 
1 − 1 − |�−β; µ, ν|β; µ, ν�|2 (20) 

1 
= 1 − 1 − e−4β2 , (21) 

2 

which we should minimize by choice of β, µ, ν subject to the average photon number 
constraint (18). We have already done that optimization—in a different setting—on 
Problem Set 5. There we showed that 

β = 
� 
N(N + 1), µ = (N + 1)/

√
2N + 1, ν = N/

√
2N + 1 (22) 

satisfied �â†â� = N and maximized the homodyne signal-to-noise ratio, 

SNRhom ≡
�â1�2 

, (23) 
�Δâ1

2� 

where â1 ≡ Re(â). But, for the squeezed state |β; µ, ν� with β, µ, ν > 0 we have that 

�â1� = (µ − ν)β and �Δâ1
2� = (µ − ν)2/4. (24) 

Thus the homodyne SNR for this squeezed state is SNR = 4β2, and therefore Eq. (22) 
provides the squeezed-state parameters that minimize the error probability expres
sion in Eq. (21). So, for optimum squeezed-state binary phase-shift keying the error 
probability is 

1� � � e−4N2 

Pr(e)SS =
2 

1 − 1 − e−4N (N+1) ≈ 
4 

, for N � 1. (25) 

Comparing this result to what we have previously found for the coherent-state trans
mitter reveals an enormous reduction in the error probability. Remember, however, 
that we assumed lossless operation. The SNR degradation arising from loss that we 
encountered in the squeezed-state waveguide tap will also affect the error probability 
calculation for binary phase-shift keying with squeezed-state light when there is loss. 
We shall not bother to work out the details. 

Squeezed-State Interferometry 

Slide 5 shows a phase-conjugate Mach-Zehnder interferometer that uses coherent-
state light. Two input modes, with annihilation operators âin and b̂in, enter a 50/50 
beam splitter, producing internal modes with annihilation operators 

â = 
âin √+

2

b̂in 
and b̂ = 

âin √− 

2

b̂in 
. (26) 
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These internal modes encounter phase shifts ±φ en route to another 50/50 beam 
spllitter, so that the annihilation operators for the interferometer’s output modes are 

ae
âout =

ˆ jφ + b̂e−jφ 

= âin cos(φ) + jb̂in sin(φ) (27) √
2 

ae
b̂out = 

−ˆ jφ 

√+
2

b̂e−jφ 

= −jâin sin(φ) − ̂bin cos(φ). (28) 

The purpose of the interferometer is to measure a very small phase shift, |φ| � 1, 
by means of photodetection measurements on one or both of its output modes. When 
the âin mode is in the coherent state |

√
N� and the b̂in mode is in its vacuum state 

|0�, we find that 

�âout� = 
√
N cos(φ) ≈

√
N, for |φ| � 1 (29) 

�b̂out� = −j
√
N sin(φ) ≈ −j

√
Nφ, for |φ| � 1. (30) 

Consequently, we shall estimate the phase shift φ by using (unity quantum efficiency) 
homodyne detection to measure b̂out2 ≡ Im(b̂out) and then take our phase estimate to 
be2 

φ̃ ≡ −b̂out2 /
√
N. (31) 

The average value of this estimate equals the unknown phase, i.e., 

�φ̃� = −�b̂out2 �/
√
N = φ, (32) 

so the mean value of the estimation error, Δ φ̃ ≡ φ − φ̃, is zero. The mean-squared 
error of this estimate is therefore 

�Δφ̃2� = �Δb̂out
2 

2 
�/N = 1/4N, (33) 

where the second equality follows because the b̂out mode is in a coherent state.3 

Equation (33) is referred to as the standard quantum limit (SQL) for this phase-
conjugate interferometer. Because this system uses classical light, the preceding esti
mation performance could have been calculated—and the same results obtained—by 
means of semiclassical photodetection theory. Hence Eq. (33) is also known as the 
shot-noise limit. As a prelude to squeezed-state interferometry, let us consider the 
physical origin of the noise in the estimate φ̃. In semiclassical theory that noise is 

2We are being a bit fast and loose here with notation. The left-hand side of this equation is a 
classical random variable, φ̃, that is our estimate of φ. The right-hand side of this equation is a 
Hilbert-space operator. What we are saying, of course, is that φ̃ is a classical random variable whose 

ˆstatistics coincide with those of the operator −bout2 /
√

N . 
3Equations (27) and (28) are a beam-splitter relation whose input modes are in coherent states. 

We know, from the homework, that the output modes will then also be in coherent states. 
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local-oscillator shot noise, and there is scarce little that we can do about it. But 
we know that the semiclassical theory of photodetection is quantitatively correct, 
for coherent-state light, but nonetheless qualitatively wrong. The noise in balanced 
homodyne detection—regardless of whether the signal beam being measured is in a 
classical or a non-classical state—is the quantum noise in the measured quadrature 
of that signal beam. From Eq. (28) we can show that 

ain1 
� sin2(φ) + �Δˆ

in2 
� cos a for φ � 1,�Δb̂out

2 
2 
� = �Δˆ2 b2 2(φ) ≈ �Δˆin

2 
1 
�φ2 + �Δb̂in2 

2 
�, | | 

(34) 
when the âin and b̂in modes are in a product state, such as their each being in a co
herent state. Just as we saw in the squeezed-state waveguide tap, we have the oppor
tunity to improve performance—reduce noise in the quadrature we will measure—by 
changing a vacuum-state mode into a squeezed-vacuum state mode, i.e., put the b̂in 

mode into a squeezed-vacuum state. While we are at it, we might as well let the âin 

mode be in a squeezed state too. 
The setup we will consider for squeezed-state interferometry, shown on slide 6, has 

the same phase-conjugate Mach-Zehnder structure as the coherent-state system we 
have already evaluated. Now, however, the âin mode is in the squeezed state |β; µ, ν�
and the b̂in mode is in the squeezed-vacuum state |0; µ, −ν�, with β, µ, ν > 0. It is a 
simple matter to verify that 

�âout� 

�b̂out� 

= 

= 

(µ − ν)β cos(φ) ≈ (µ − ν)β, 

−j(µ − ν)β sin(φ) ≈ −j(µ − ν

for 

)βφ, 

|φ| � 1 

for |φ| � 1. 

(35) 

(36) 

Hence we will use 
φ̃ ≡ −b̂out2 /[(µ − ν)β] (37) 

as our estimate of the unknown phase φ, from which it follows that 

�φ̃� = φ (38) 

and 

φ2 (µ − ν)2φ2 + (µ − ν)2 

≈ 1/4β2 , for φ � 1. (39) �Δ˜ � = 
4[(µ − ν)β]2 

| | 

It is tempting to apply the same 4β2 optimization that we used in the binary phase-
shift keying application to minimize this mean-squared phase estimation error, but 
that is not an appropriate thing to do. For a fair comparison between the squeezed-
state interferometer and the coherent-state interferometer, each one must employ the 
same average number of photons. For the coherent-state system, all the photons enter 
the interferometer via the âin mode, and we have 

�â†ˆ b† b̂in� = N + 0 = N. (40) ain� + �ˆin 
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For the squeezed-state interferometer, on the other hand, both input modes are ex
cited, and we get 

�â†ˆ b† b̂in� = {[(µ − ν)β]2 + ν2 = N, ain� + �ˆin } + ν2 = [(µ − ν)β]2 + 2ν2 (41) 

where the last equality is our average photon-number constraint on β, µ, ν. So, we 
must maximize β2 subject to this constraint. A little calculus yields � N + 2 N 

β = N(N + 2)/2, µ = , ν = , (42) 
2
√
N + 1 2

√
N + 1 

as the optimum squeezed state for this application, which, in turn, gives 

�Δφ̃2� = 1/2N(N + 2) ≈ 1/2N2 , for N � 1. (43) 

for the mean-squared phase estimation error. 
The performance of the optimized squeezed-state interferometer is much better 

than that of its coherent-state counterpart. Once again, however, we have assumed 
lossless conditions. When there is loss in the interferometer’s arms or sub-unity 
quantum efficiency in the homodyne detector, this performance advantage will be 
degraded. Here too we shall not bother working out the details. 

Super-Dense Coding 

Let us return to binary optical communication in an ideal lossless setting. This time, 
however, we shall employ non-classical states throughout, and show an advantage 
that derives from using entangled states instead of single-photon states. We will 
start with single-photon binary polarization modulation, as shown on slide 7. Here, 
a message m—equally likely to be 0 or 1—is sent by exciting the field modes (âx 

�ix + 
ây 
�iy)e

−jω0t/
√
T for 0 ≤ t ≤ T in the horizontally polarized single-photon state, |ψ0� = 

|H�, when m = 0 and in the vertically polarized single-photon state, |ψ1� = |V �, when 
m = 1. It is easy to see that the ideal polarization analysis system shown on slide 7 
allows the receiver to make an error-free determination of which message was sent. 
Because there is no loss in the system, the transmitter’s single-photon state arrives 
unimpeded at the receiver. There, it is transmitted by the polarizing beam splitter 
if that photon is horizontally polarized, and it is reflected if that photon is vertically 
polarized. Ideal photon counters placed at the output ports of the polarizing beam 
splitter then provide perfect discrimination between these two message possibilities.4 

Thus, this system achieves error-free communication of a single binary digit (bit) 

4In terms of the optimum quantum measurement theory that we developed earlier in this lecture 
we know that Δρ̂ = (|V ��V | − |H��H|/)2 has |V � spanning its non-negative eigenspace and |
spanning its negative eigenspace within the Hilbert space of single photon states for the modes 

H� 

associated with {âx, ây }. So, the polarization analysis system does realize the optimum quantum 
measurement. 
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by transmission of one photon. Now let us see how entanglement can increase the 
communication capacity to two bits per photon. 

Suppose that Alice and Bob have shared a singlet state of two photons, 

|ψ−�AB = 
|H�A|V �B √− 

2

|V �A|H�B 
, (44) 

in advance of attempting any information transmission. Alice wants to send two bits 
of information—m = 00, 01, 10, or 11—to Bob by transmission of her single photon. 
To do so, she applies one of four distinct waveplate transformations to her half of the 
singlet state to encode the message m. Assuming5 that her photon was initially in 
the state α|H�A + β|V �A, where |α|2 + |β|2 = 1, these waveplate transformations are: 

α|H�A + β|V �A −→ α|H�A + β|V �A, if m = 00 (45) 

α|H�A + β|V �A −→ α|H�A − β|V �A, if m = 01 (46) 

α|H�A + β|V �A −→ α|V �A + β|H�A, if m = 10 (47) 

α|H�A + β|V �A −→ α|V �A − β|H�A, if m = 11. (48) 

Viewed on the tensor-product Hilbert space for the joint state of Alice and Bob’s 
photons, Alice’s waveplate transformation changes |ψ−�AB into one of the following 
message-bearing states, 

|ψ00�AB = 
|H�A|V �B √− 

2

|V �A|H�B 
, if m = 00 (49) 

|ψ01�AB = 
|H�A|V �B √+

2

|V �A|H�B 
, if m = 01 (50) 

|ψ10�AB = 
|H�A|H�B √− 

2

|V �A|V �B 
, if m = 10 (51) 

|ψ11�AB = 
|H�A|H�B √+

2

|V �A|V �B 
, if m = 11, (52) 

which we recognize—from our work on qubit teleportation—as the four Bell states. 
So, when Alice transmits her modulated photon to Bob, he now has both halves of a 
Bell state. And, because the Bell states are orthonormal, he can measure the POVM 
{ Π̂m : m = 00, 01, 10, 11}, with 

Π̂m ≡ |ψm�ABAB�ψm|, for m = 00, 01, 10, 11, (53) 

5As we know, Alice’s half of the singlet state is in a completely mixed state, ρ̂A = (|H�AA�H| + 
|V �AA�V |)/2, but this pure-state assumption makes it possible for us to provide an explicit descrip
tion of the waveplate transformations. 
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and receive Alice’s two-bit message without error. If we discount Alice and Bob’s 
initial sharing of the singlet state, which did not in itself convey any information 
between them, then Alice has just sent Bob two bits of information by transmission 
of her one photon. In comparison with the previous single-photon polarization system, 
this entanglement-based approach increases communication capacity by a factor of 
two. Because communication of one bit is the ultimate limit for one-time transmission 
using an unentangled single photon, we can say that the unentangled system on slide 7 
uses dense coding. For that reason, the entangled system that we have just analyzed 
is said to use super-dense coding: it communicates two bits of information by means 
of one-time transmission of a single-photon state. 

Quantum Lithography 

Our last example, quantum lithography, is also based on entanglement. Consider the 
setup shown on slide 10. Here, we are trying to lay down a sinusoidal fringe pattern 
on a photoresist (located in the z = 0 plane) so that, after processing, we can obtain 
a mask for producing that pattern on a semiconductor wafer.6 The slide 10 setup 
uses coherent-state light, i.e., the plane-wave field modes 

a+e
−j(ωt−�k+·�r) 

−e
−j(ωt−�k �r)ˆ â −·

√
T 

and √
T 

for 0 ≤ t ≤ T , (54) 

are both in their | N/2� coherent states. Their propagation vectors obey 

�k = ±k sin(θ)�ix + k cos(θ)�iz, (55) ± 

where k ≡ ω/c. On the surface of the photoresist the total field operator is therefore 

Ê(x, t) = 
â+e

−j(ωt−k sin(θ)x) 

+ 
â−e

−j(ωt+k sin(θ)x) 

, for 0 ≤ t ≤ T , (56) √
T 

√
T 

where we have neglected vacuum-state modes that are needed to give Ê the proper 
free-field commutator bracket with its adjoint.7 We will assume that the photoresist 
is illuminated for the full 0 ≤ t ≤ T time interval, resulting in an exposure that is 
proportional to � T 

E(x, t) = ˆ+ ˆ a† 2jk sin(θ)x). (57) dt Ê†(x, t) ˆ a† â+ + â† a− + 2Re(â+ˆ e− −
0 

6Producing a fringe pattern is the most elementary photolithographic task. For VLSI fabrication, 
much more complicated patterns are needed. Nevertheless, to illustrate the basic idea of quantum 
lithography, we will limit our consideration to this simple example. 

7These vacuum-state modes will not contribute to the measurement made by the photoresist, so 
it is safe to ignore them. 
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For the â± modes in the assumed coherent states, we have that the average value of 
the exposure is �� T � 

dt Ê†(x, t)Ê(x, t) = �â†+â+� + �â† â−� + 2Re(�ˆ a† 2jk sin(θ)x) (58) − a+��ˆ−�e 
0 

= N [1 + cos(2k sin(θ)x)]. (59) 

This is a sinusoidal fringe pattern, P(x), with 100% visibility, i.e., 

max[P(x)] − min[P(x)] 
= 1. (60) 

max[P(x)] + min[P(x)] 

It has spatial period λ/2 sin(θ), with λ = 2π/k being the wavelength of the illumi
nation. Thus, for coherent-state illumination at wavelength λ, the finest sinusoidal 
fringe pattern that we can produce has period λ/2. It is realized as the illumination 
approaches grazing incidence on the photoresist, i.e., as θ π/2.→

Now consider the quantum lithography setup shown on slide 11. It differs from 
the coherent-state system we have just discussed in only two ways. First, the â± 

modes are in the entangled state 

|N00N� ≡ 
|N�+|0�−√+

2

|0�+|N�− 
, (61) 

where |N�± are the N -photon states of the â± modes and |0�± are their vacuum 
states. Second, the resist is an N -photon absorber, i.e., it responds to � T 

dt KÊ†N (x, t)ÊN (x, t), 
0 

for some positive constant K. The average value of this quantity then turns out to 
be �� T � 

dt KÊ†N (x, t)ÊN (x, t) = KN ![1 + cos(2kN sin(θ)x)]/T N−1 , (62) 
0 

as the reader may want to verify. This average exposure is a 100% visibility sinusoidal 
fringe pattern whose spatial period is λ/2N sin(θ). Entanglement of N photons has 
enabled a factor-of-N reduction in the spatial period without changing the wavelength 
of the light. 

Preliminary proof-of-principle demonstrations—using photodetectors instead of 
photoresists—have been reported for N00N -state generation. There are, however, 
substantial issues to be confronted in obtaining N -photon photoresists. Nevertheless, 
quantum lithography provides another example of the improved capabilities that can 
be obtained by use of non-classical illumination, albeit one that needs considerable 
more research before it can be brought to fruition. 
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The End of the Road... 

We have now reached the end of 6.453, but it is not the end of the road. With 
this foundation, plus some collateral knowledge, the reader should be well prepared 
to enter research in quantum optical communication. For example, knowledge of 
classical information theory, plus what we have covered in 6.453, is sufficient to begin 
research on the classical information capacity of optical communication channels in 
a fully quantum sensing. Likewise, knowledge of basic Fourier optics, plus what we 
have covered in 6.453, is sufficient to begin research on quantum imaging, i.e., imaging 
systems that employ non-classical resources to obtain improved resolution. 
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