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Introduction 

Last time we established the quantum version of coupled-mode theory for sponta
neous parametric downconversion (SPDC). We exhibited the exact solutions for the 
output signal and idler beams, their jointly Gaussian state characterization when 
the input beams are in their vacuum states, and the low-gain regime approximations 
for the correlation functions that characterize that state. We also introduced the 
lumped-element coupled-mode equations for the optical parametric amplifier (OPA), 
presented their solutions, described their jointly Gaussian state when the signal and 
idler inputs are unexcited, and showed that the OPA produced quadrature-noise 
squeezing. Today, we shall finish our survey of the nonclassical signatures produced 
by χ(2) interactions by considering Hong-Ou-Mandel interferometry, the generation 
of polarization-entangled photon pairs from SPDC, and the photon-twins behavior of 
the signal and idler beams from an OPA. Along the way we will learn about quantum 
interference and photon indistinguishability. 

Quantum Interference 

Let us get started with a simple single-mode description in order to introduce quantum 
interference. Consider the 50-50 beam splitter arrangement shown on slide 3. Here, 
the only excited modes at the input ports are the co-polarized, pure-tone, plane-wave 
pulses ˆ e−jω0t/

√
T and ˆ e−jω0t/

√
T , for 0 ≤ t ≤ T . The resulting excited modes aSin aIin 

at the beam splitter’s output then have annihilation operators given by1 

âSout = 
jâSin√− 

2 

âIin and âIout = 
−âSin√+

2 

jâIin . (1) 

1The reader should check that this is indeed a unitary transformation and that it conserves energy 
and commutator brackets. It differs from the 50-50 beam splitter relation, âSout = (âSin + âIin )/

√
2 

and âIin = (âSin − âIin )/
√

2, that we have previously employed. That difference, however, is one 
of phase-angle choices that amount to simple changes in the input and output reference planes on 
which the fields are defined. The new choices make the transformation symmetrical, which lends 
itself to greater insight into the quantum interference process. 

1 



We shall assume that the input modes are each in their single-photon state, so that 
their joint state is the product state |ψin� = |1�Sin |1�Iin . What then is the joint state of 
the output modes? We know that it must be a pure state, because we are starting from 
a pure state and the beam splitter transformation is a unitary evolution. We know 
that it must contain exactly two photons, because the beam splitter transformation 
conserves energy and there are exactly two photons present at its input. Thus we can 
safely postulate 

|ψout� = c20|2�Sout |0�Iout + c11|1�Sout |1�Iout + c20|0�Sout |2�Iout , (2) 

for the output state’s number–state representation, where |c20|2 + |c11|2 + |c02|2 = 1. 
Furthermore, treating each input mode’s input state as an independent, billiard-ball 
photon that is equally likely to be transmitted or reflected by the beam splitter, we 
could easily be led to conclude that 

|c20|2 = |c02|2 = 1/4 and |c11|2 = 1/2, (3) 

so that


Pr(NSout = nS , NIout = nI ) = 

⎧ ⎪⎪⎪⎨ 
1/4, 

1/2, 

for nS = 2, nI = 0 

for nS = 1, nI = 1 ⎪⎪⎪⎩ 
1/4, for nS = 0, nI = 2 

0, otherwise, 

(4)


for ideal (unity quantum efficiency) photon counting measurements on the output 
modes. 

These results seem quite reasonable. There is only one way for both photons to 
emerge in the âSout mode: the âSin photon gets transmitted and the âIin photon gets 
reflected. Similarly, there is only one way for them to both emerge in the âIout mode: 
the âSin photon gets reflected and the âIin photon gets transmitted. On the other hand, 
there are two ways for one photon to emerge in each mode, i.e., both input photons 
are transmitted or both are reflected by the beam splitter. Because this billiard-ball 
picture says photon transmission and reflection is equally likely to occur at the 50-50 
beam splitter, we get the photon counting distribution given above. Photons, however, 
are not billiard balls, as we know from our work on polarization entanglement. In the 
present context, their wave-like properties cause them to interfere at the 50-50 beam 
splitter, leading, as we will soon show, to the following output state 

|ψout� = 
|2�Sout |0�Iout√+

2

|0�Sout |2�Iout . (5) 

Two things are worth noting before proceeding to the derivation: the input state 
was a product state, but the output state is entangled; and both photons always 
leave through the same output port. Why is it impossible to get one photon to 
appear in each output port? Quantum interference is the answer. In particular, we 
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must add the complex amplitudes for the two possible ways in which one photon 
can appear in each output port before taking the squared magnitude to calculate 
the photon counting probability for the event in which one photon is present at each 
output port. It is the nature of 50-50 beam splitting that the complex amplitudes 
for these two possibilities—b oth input photons transmitted or both reflected—ha ve 
equal magnitudes but are π radians out of phase. Hence their complex amplitudes 
sum to zero, and we never get one photon emerging from each of the beam splitter’s 
output ports. 

To verify that the output state is as given in Eq. (5), let us assume that this 
equation is correct. The normally-ordered characteristic function for the output state 
then obeys, 

χout ζS â
† +ζI â

†
S âSout −ζI 

∗âIout � = N (ζS 
∗ , ζI 

∗; ζS, ζI ) ≡ �e Sout Iout e−ζ∗ 
(6) 

Sout e a†
S aSout e−ζ∗ ̂�e ζS â

† ζI ̂ Iout e−ζ∗ ̂
I aIout � = (7) 

ζ2 ζ2 

+ S + I
Sout�2| + 

√
2ζSSout�1| √

2 Sout�0| Iout�0| + Iout�2| + 
√

2ζI Iout�1| √
2 Iout�0| Sout�0|

√
2 

× 

ζ∗2 ζ∗2 

|2�Sout −
√

2ζS 
∗ |1�Sout + √S

2 
|0�Sout |0�Iout + |2�Iout −

√
2ζI 

∗|1�Iout + √I
2 
|0�Iout |0�Sout 

√
2 

= 1 − |ζS |2 − |ζI |2 + |ζS 
2 + ζI 

2|2/4, (8) 

where the second equality follows because âSout and âIout commute, and the third 
equality follows from series expansion of the exponentials plus the assumed output 
state. Now let us show that we can get this same result by starting from the input 
state and the beam splitter transformation. 

From Eq. (1), we can easily show that 

χout (ζ∗ , ζI 
∗; ζS , ζI ) = χSin 

jζS 
∗ − ζI 

∗ 

, 
−jζS − ζI 

χIin 
jζI 

∗ − ζS 
∗ 

, 
−jζI − ζS 

. (9) N S N N√
2 

√
2 

√
2 

√
2 

By series expansion of the exponentials in the characteristic functions on the right-
hand side and the fact that the input modes are in their single-photon states, we then 
get 

χout 
N (ζS 

∗ , ζI 
∗; ζS , ζI ) = (1 − |jζS + ζI |2/2)(1 − |jζI + ζS |2/2) (10) 

= 1 − |ζS |2 − |ζI |2 + |jζS + ζI |2|jζI + ζS |2/4 (11) 

= 1 − |ζS |2 − |ζI |2 + |jζS + ζI |2|ζI − jζS |2/4 (12) 

= 1 − |ζS |2 − |ζI |2 + |ζS 
2 + ζI 

2|2/4, (13) 
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which shows that Eq. (5) is indeed the output state.2 

The calculational tools we have developed this semester allowed us to determine 
the output state for the slide 3 arrangement when its input modes are in their single-
photon states. The work we have just completed, however, affords little insight into 
the quantum interference phenomenon that we described qualitatively before pro
ceeding with our calculations. To gain that insight let us rewrite the input state in 
the following form, 

|ψin� = |1�Sin |1�Iin = â† â† |0�Sin |0�Iin , (14) Sin Iin 

where we have used photon-creating nature of â† and â† . Now, because Sin Iin 

âSin = 
−jâSout − âIout and âIin = 

−âSout − jâIout (15) √
2 

√
2 

is the inverse transformation associated with Eq. (1), and because the vacuum input 
state |0�Sin |0�Iin leads to the vacuum output state |0�Sout |0�Iout , Eq. (14) implies that 

|ψout� = 
jâS

†
out√
− 

2 

âI
†
out 

−âS
†

out√
+

2 

jâI
†
out |0�Sout |0�Iout (16) 

a†2 a† â† + â† â† a†2 

= 
−jˆSout 

− ˆSout Iout 

2 
Iout Sout 

− jˆIout |0�Sout |0�Iout (17) 

= −j |2�Sout |0�Iout√+
2

|0�Sout |2�Iout . (18) 

The four terms in the numerator on the right-hand side of the second equality rep
resent the four possible ways in which the two photons that enter the beam splitter 
may emerge from that beam splitter. As promised, the second and third terms—  
which represent the events in which both are transmitted or both are reflected—ha ve 
equal magnitudes and are π radians out of phase. As a result, these terms interfere 
destructively , and we never get one photon emerging from each of the beam split
tyer’s output ports. Recall that the absolute phase of a ket is irrelevant, i.e., it does 
not affect quantum measurement statistics. Thus, this much quicker derivation does 
reproduce Eq. (5) while clearly revealing the underlying quantum intereference. 

Photon Indistinguishability 

A key element in the quantum interference phenomenon that we just studied is photon 
indistinguishability, viz., two photons that are in the same mode cannot be distin

2If you could not have guessed that Eq. (5) would be the output state, you could have converted 
χout , ζ∗; ζS , ζI ) to the anti-normally ordered characteristic function. The operator-valued inverse N (ζS 

∗ 
I 

Fourier transform of this anti-normally ordered characteristic function is the joint density operator 
for the output modes. By evaluating the number-ket matrix elements for this joint density operator 
you would have been led to conclude that the output modes were in the pure state given by Eq. (5). 
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guished from each other. As a prelude to our treatment of Hong-Ou-Mandel interfer
ometry, let us re-examine the preceding quantum interference setup when the input 
photons are no longer indistinguishable. For this purpose, let us consider both the 
x and y polarizations of pure-tone, plane-wave pulses arriving at the beam splitter’s 

in in	 in ininput ports, i.e., (â �ix + â �iy)e
−jω0t/

√
T	 and (â �ix + â �iy)e

−jω0t/
√
T for 0 ≤ t ≤ T .Sx Sy	 Ix Iy 

We will assume that the input state for these four modes is 

|ψin� = |1�Sinx 
|0�Siny 

(cos(θ)|1�Iinx 
|0�Iiny 

+ sin(θ)|0�Iinx 
|1�Iiny 

), (19) 

so that one photon enters each of the beam splitter’s input ports, but they are po
larized along �ix and �iθ ≡ cos(θ)�ix + sin(θ)�iy, respectively. For sin(θ) = 0, this makes �
the photons in the two input modes (at least partly) distinguishable. In particular, 

inphoton counting on the âSy 
mode will never register a detection, but photon counting 

on the âin mode will register a detection with non-zero probability sin2(θ).Iy 

Our route to finding the output state for this situation will be a generalization of 
the simple quantum interference calculation that we gave at the end of the previous 
section.3 The input state we have assumed can be written as follows, 

|ψin� = â inSx 

†(cos(θ)â inIx 

† + sin(θ)â inIy 

†)|0�Sinx 
|0�Siny 

|0�Iinx 
|0�Iiny 

(20) 

Using the fact that the vacuum input state |0�Sinx 
|0�Siny 

|0�Iinx 
|0�Iiny 

yields the vacuum 
output state |0�Soutx 

|0�Souty 
|0�Ioutx 

|0�Iouty 
, and the beam-splitter relations 

in in	 in in 
out Sk 

− âIk	
−â + jâIk

jâ	
out Sk âSk 

= √
2 

and âIk 
= √

2 
, for k = x, y, (21) 

we find that the output state is � �� �	 � � �� 
jâout† a out† a out† + jâout†	 a out† + jâout† 

|ψout� = Sx √
− 

2

ˆIx cos(θ) 
−ˆSx √

2 
Ix + sin(θ) 

−ˆSy √
2 

Iy 

× |0�Soutx 
|0�Souty 

|0�Ioutx 
|0�Iouty	

(22) 

= −j cos(θ)
|2�Soutx 

|0�Ioutx √+
2

|0�Soutx 
|2�Ioutx |0�Souty 

|0�Iouty 

+	 sin(θ)
−j|1�Soutx 

|1�Souty 
− |1�Soutx 

|1�Iouty 
+ |1�Ioutx 

|1�Souty 
− j|1�Ioutx 

|1�Iouty . 
2 

(23) 

So, if we count the number of photons— summed over both polarizations— emerging 
from one of the output ports, there will be a probability 3 sin2(θ)/4 of getting one 
count. The difference in the polarization states of the incoming photons makes them 

3The characteristic function approach can also be employed, but it is considerably more tedious. 
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at least partially distinguishable, and hence degrades the quantum interference that, 
for indistinguishable single-photon inputs, makes it impossible to observe only one 
count (with unity quantum efficiency detectors) at an output port. When θ = π/2, 
the input photons are orthogonally polarized and thus completely distinguishable. In 
this case the output state is 

|ψout� = 
−j|1�Soutx 

|1�Souty 
− |1�Soutx 

|1�Iouty 

2

+ |1�Ioutx 
|1�Souty 

− j|1�Ioutx 
|1�Iouty , (24) 

whose photon counting distribution, 

Pr(Nout + Nout = nS, N
out + Nout 

Sx Sy Ix Iy 
= nI ) = 

⎧ ⎪⎪⎪⎨ 
1/4, 

1/2, 

for nS = 2, nI = 0 

for nS = 1, nI = 1 ⎪⎪⎪⎩ 
1/4, for nS = 0, nI = 2 

0, otherwise, 

(25)


is in agreement with what is obtained from the simple billiard-ball photon picture 
given earlier. 

Hong-Ou-Mandel Interferometry 

Slide 4 shows a continuous-wave (cw) SPDC source driving a Hong-Ou-Mandel (HOM) 
interferometer. In the HOM configuration, two input beams are combined on a 50-50 
beam splitter that can be moved to produce a differential time delay T in its input-
output relation (see below). The output beams from the splitter are directed to a 
pair of photodetectors, each with quantum efficiency η but otherwise ideal, whose 
output photocurrents are processed by a coincidence counter. This counter measures 
the number of Tg-sec-long time intervals in which a coincidence has occurred, i.e., the 
number of Tg sec gate intervals in which both detectors have registered photodetec
tions. Moreover, the coincidence measurement is performed as the differential delay 
T is varied. From our work on quantum interference, we expect that there will be no 
coincidences when a pair of indistinguishable photons—o ne in each input arm of the 
50-50 beam splitter—en ter the interferometer. Let’s see if that is so for the photon 
pairs produced by cw SPDC. 

We will assume that the SPDC source is a type-II system which is phase-matched 
at frequency degeneracy and operated in the low-gain regime. As shown on slide 4, 
a half-wave plate is used to rotate the signal-beam’s polarization state so that it 
is co-polarized with the idler. In this case we can take the joint state of the y-
polarized (non-vacuum state) beams that enter the HOM interferometer to be a zero-

mean Gaussian that is characterized by its non-zero correlation functions, K(n) 
kk (τ) ≡

(p)�Êk
†(t + τ)Êk(t)� for k = S, I, and KSI (τ) ≡ �ÊS (t + τ)ÊI (t)�. Using the results of 
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Lecture 21 we have that these correlation functions are given by, � � �2 
(n) (n) dω 2l2 sin(ωΔk�l/2) jωτ KSS (τ) = KII (τ) = 

2π 
|κ|

ωΔk�l/2 
e (26) ⎧ � � ⎨ |κ|2l |τ | 

, for τ Δk� l 
= ⎩ 

|Δk�| 1 − |Δk�|l | | ≤ | |
(27) 

0, otherwise, 

and ⎧ 

(p) 
� 

dω sin(ωΔk�l/2) jω(τ +Δk�l/2) 
⎨ jκ 

, for 0 ≤ τ ≤ Δk� l 
KSI (τ) = 

2π 
jκl 

ωΔk�l/2 
e = ⎩ 0

|Δ
,

k�|
otherwise, 

| |
(28) 

where we have assumed the Δk� < 0, as shown on the bottom of slide 4. 
The field operators that illuminate the two photodetectors in the HOM setup will 

be taken to be 

ÊS (t) + ÊI (t − T/2) ES (t + T/2) + ÊI (t)ˆ ˆESout (t) = √
2 

and EIout (t) = 
− ˆ √

2 
, (29) 

where T is the differential delay arising from the position of the beam splitter. Let 
NSout and NIout be the number of photons detected in the time interval 0 ≤ t ≤ Tg by 
the photodetectors that are illuminated by ÊSout (t) and ÊIout (t), respectively. From 
our work on quantum photodetection theory, we know that these classical random 
variables have statistics that are equivalent to those of the observables � Tg 

� Tg 

N̂Sout dt ÊS
�†
out 

(t)ÊS
�
out 

(t) and N̂Iout dt ÊI
�†
out 

(t)ÊI
�
out 

(t), (30) ≡ 
0 

≡ 
0 

where 

ˆ ˆE � (t) ≡ √η ÊSout (t) + 
� 

1 − η ÊηS (t) and E � (t) ≡ √η ÊIout (t) + 
� 

1 − η ÊηI (t),Sout Iout 

(31) 
with ÊηS (t) and ÊηI (t) being in their vacuum states. It follow that �� Tg 

� �� Tg 
� 

�N̂Sout � = dt ÊS
�†
out 

(t)ÊS
�
out 

(t) = η dt ÊS
†
out 

(t)ÊSout (t) (32) 
0 0 

= 
η 
2 

� 

0 

Tg 

dt [�ÊS
† (t)ÊS (t)� + �ÊI

†(t − T/2)ÊI (t − T/2)�] (33) 

η 
� Tg 

(n) (n) η κ 2lTg
= dt [KSS (0) + KII (0)] = 

| |
. (34) 

2 0 |Δk�| 
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A similar calculation—w hich the reader should perform—will  show that 

�N̂Iout � = 
η|κ|2lTg 

. (35) 
|Δk�| 

Signal and idler photons are produced in pairs by SPDC, so there should be no 
surprise that the preceding singles averages— the average number of counts in the 
gate interval for a single detector— should be identical. What we are interested in is 
the average number of coincidences in this gate interval. That will require a bit more 
work to determine. 

(n)
In typical SPDC operation, the photon flux of the signal and idler, i.e., KSS (0) = 

(n)
KII (0) = |κ|2/|Δk�|, will be less than (often much less than) 106 s−1 . The duration 
of the coincidence gate, however, will usually be Tg ∼ 1 ns. Consequently, we have 

�N̂Sout � = �N̂Iout � � 1, (36) 

and so it is fair to say that each detector detects at most one photon during the time 
interval 0 ≤ t ≤ Tg. 4 From this approximation we can use the classical photocount 
variables to identify coincidences by virtue of 

1, if there is a coincidence in 0 ≤ t ≤ Tg 
NSout NIout = (37) 

0, otherwise. 

Invoking quantum photodetection theory again, we have that 

C(T ; Tg) ≡ � N̂Sout N̂Iout � (38) 

gives the average number of coincidences in 0 ≤ t ≤ Tg as a function of the differential 
delay T and the gate duration Tg. To evaluate C(T ; Tg) we write �� Tg 

� Tg 
� 

C(T ; Tg) = dt ÊS
�†
out 

(t)ÊS
�
out 

(t) du ÊI
�†
out 

(u)ÊI
�
out 

(u) , (39) 
0 0 

combine the product of integrals into a double integral and use the fact that ÊSout (t) 
and ÊIout (u) commute with each other and with each other’s adjoint, obtaining � Tg 

� Tg 

C(T ; Tg) = dt du �Ê �† (t)Ê �† (u)Ê � (t)Ê � (u)� (40) Sout Iout Sout Iout 
0 0 � Tg 

� Tg 

= η2 dt du �ÊS
†
out 

(t)ÊI
†
out 

(u)ÊSout (t)ÊIout (u)�. (41) 
0 0 

4A rigorous proof of this statement requires a bit more work than indicated here, but will be 
omitted. 
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Because ÊS(t) and ÊI (t) are in a jointly Gaussian state, and ÊSout (t) and ÊIout (t) 
are obtained from a linear transformation of these field operators, they too are in a 
jointly Gaussian state. Thus the quantum version of the Gaussian moment factoring 
theorem allows us to reduce the fourth-order field-operator moment in C(T ; Tg) to 
sums of products of second-order field-operator moments, viz.,5 � Tg 

� Tg 

C(T ; Tg) = η2 

0 
dt 

0 
du � Ê†

Sout 
(t) ÊSout (t)�� Ê

†
Iout 

(u) ÊIout (u)� 

� Tg 
� Tg 

+ η2 

0 
dt 

0 
du |� ÊSout (t) ÊIout (u)�|2 (42) 

= � N̂Sout �� N̂Iout � + η2 

� Tg 

0 
dt 
� Tg 

0 
du |K(p) 

SoutIout 
(t − u)|2 (43) 

= 

� 
η|κ|2lTg 

|Δk�| 

�2 

+ η2Tg 

� Tg 

−Tg 

dτ |K(p) 
SoutIout 

(τ )|2 

� 

1 − 
|τ |
Tg 

� 

(44) 

≈ 

� 
η|κ|2lTg 

|Δk�| 

�2 

+ η2Tg 

� ∞ 

−∞ 
dτ |K(p) 

SoutIout 
(τ)|2 , (45) 

††††

where the approximation assumes that Tg � |T | + |Δk�|l. In typical SPDC-HOM 
experiments, T and |Δk�|l are on the order of psec, so this approximation is well 
justified for Tg ∼ 1 ns. 

†

To go further we use the beam splitter relation for ÊSout (t) and ÊIout (t) to express 
their phase-sensitive cross-correlation function in terms of the corresponding cross

state then 

†

correlation function for ÊS (t) and ÊI (t), i.e., 

(p) ÊS (t + τ) + ÊI (t + τ − T/2) −ÊS (t + T/2) + ÊI (t)
KSoutIout 

(τ) = (46) √
2 

√
2 

K
(p) (p) 

= SI (τ) − KSI (−τ + T ) 
. (47) 

2 
5See the random processes notes for a brief discussion of the Gaussian moment factoring theorem 

for real-valued classical random variables. The corresponding result for the quantum case that we 
will use several times today is as follows. If Êa(t) and Êb(t) are in a zero-mean jointly Gaussian 

a b a b a bE� ˆ (t)Ê (u)Êa(t)Êb(u)� = �Ê (t)Êa(t)��Ê (u)Êb(u)� + �Ê (t)Êb(u)��Ê (u)Êa(t)� 

E� ˆ (t)Ê (u)��Êa(t)Êb(u)�.+ ††
a b 

This same result can be used for a single field, Ê(t), that is in a zero-mean Gaussian state by setting 
Êa(s) = Êb(s) = Ê(s) in the preceding expression for s = t, u 
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 �

whence


2lTg 
�2 

η2Tg 
∞η|κ|

|Δk�
(p) (p) 2C(T ; Tg) ≈ dτ K
 (τ) − K
 (−τ + T )
 .
 (48)
+
 |
 |
SI SI |
 4
 −∞ 

For |T | ≥ 2|Δk�|l, the two terms inside the integrand’s magnitude squared are non-
overlapping time functions, so that 

2lTg 
�2 

η2Tg 
∞η|κ|

|Δk�
(p) 2C(T ; Tg) dτ K
 (τ)
 (49)
+
≈
 |
 |
SI |
 2
 −∞ 

η|κ|2lTg 
�2 

+ 
η2|κ|2lTg 

.	 (50) 
|Δk� 2|Δk�

=

|
 |


In the low-flux limit that we have assumed, wherein |κ|2l/|Δk�| � 1, the first term on 
the right in Eq. (50) can be neglected in comparison with the second. Experimentalists 
refer to the first term as the“accidental” coincidences, not the “true” coincidences that 
are counted by the second term . Thus we shall suppress these accidentals and say 
that


η2Tg 
∞ 

(p) (p) 2C(T ; Tg) ≈ dτ K
 (τ ) − K
 (−τ + T )
 ,
 (51)
|
 |
SI SI 4 −∞ 

gives the HOM interferometer’s coincidence count in the Tg-sec gate interval. As 
shown on slide 5, C(T ; Tg) drops to zero when T = |Δk�|l, despite the average num
ber of singles on each detector being unaffected by the differential delay T . This 
C(T ; Tg) → 0 as T → |Δk�|l behavior is called the HOM dip, and it occurs because 
for this value of the differential delay we get K(p)

(τ) = K(p)
(−τ + T ). The HOM dip SI SI 

is the signature of quantum interference between indistinguishable photons that we 
saw earlier in this lecture, as we will now explain. 

In type-II phase-matched, frequency-degenerate, cw SPDC, a single pump pho
ton can spontaneously fission into a signal-idler photon pair at some z-plane within 
the χ(2) crystal. Inside the crystal, the signal and idler photons propagate at their 
respective group velocities, 

vgS = 
dkS (ωP /2 + ω) 

dω


−1 −1 

and vgI =
dkI (ωP /2 − ω) 

.
 (52)
−

dω
ω=0 ω=0 

Thus the component photons of this signal-idler pair separate as they propagate from 
where they were created to the crystal’s exit facet at z = l, because 

Δk� = −

dkS (ωP /2 + ω) −


dkI (ωP /2 − ω) 
= −


1 1

+ = 0. (53) 

dω
 ω=0 dω
 ω=0 vgS vgI 

We have assumed Δk� < 0, which means that inside the nonlinear crystal the signal 
(p)

propagates slower than the idler does.	 So, consistent with the KSI (τ ) = �ÊS (t + 
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τ)ÊI (t)� sketch on slide 4, a signal-idler pair created at z = l is correlated at τ = 0, 
while a signal-idler pair created at z = 0 will be correlated at τ = |Δk�|l, and signal-
idler pairs created at intermediate z-planes within the χ(2) crystal will be correlated 
at τ values intermediate between these two extremes.6 In order to make the two 
component photons of a signal-idler pair be indistinguishable— so that quantum in
terference will occur in the HOM interferometer—w e need the differential delay T to 
compensate for the idler’s group velocity advantage in the crystal. That is indeed is 
what T = |Δk�|l accomplishes. 

The Biphoton and Generation of Polarization Entanglement 

Our Gaussian-state analysis of the HOM dip obtained with SPDC, although rigorous, 
is much more elaborate than what almost all experimentalists—and  for that matter 
almost all theorists—or dinarily employ. Instead, for the low-gain, low-flux regime 
in which we evaluated the HOM dip, they would say that the output state from 
frequency-degenerate, cw SPDC is 

|ψSI � = |0�S|0�I + 
∞ d

2π

ω 
jκl 

sin(

ω

ω

Δ

Δ

k�
k

l/

�l/

2

2) 
ejωΔk�l/2|ωP /2 + ω�S|ωP /2 − ω�I . (54) 

−∞ 

Here: 0�S and 0�I are the vacuum states of ÊS (t) and ÊI (t), respectively; ωP /2+ω�S| |
ÊS (t)e

−jωP t/2 
|

is the state in which has one photon at frequency ωP /2 + ω and no 
photons at other frequencies; and |ωP /2 − ω�I is the state in which ÊI (t)e

−jωP t/2 has 
one photon at frequency ωP /2 − ω and no photons at other frequencies. There are 
many things worth noting about Eq. (54). 

•	 The state |ψSI � is not properly normalized. 

•	 Because we are in the low-gain, low-flux regime for SPDC, the vacuum term in 
|ψSI � dominates its non-vacuum term. 

•	 The non-vacuum term is called the biphoton state. It is an entangled state in 
which a signal photon at frequency ωP /2+ ω is accompanied by an idler photon 
at frequency ωP /2 − ω, in accord with energy conservation for pump-photon 
fission. 

•	 In coincidence-counting experiments we can post-select for the biphoton state 
by including in our data processing only those measurements in which both a 
signal photon and an idler photon were detected. 

•	 Equation (54) reproduces the rigorous Gaussian-state results for the first and 
second moments of ÊS (t) and ÊI (t). Thus, in the low-gain, low-flux regime for 

(p)6Remember, that KSI (τ ) is the phase-sensitive cross-correlation function outside the nonlinear 
crystal, where both the signal and idler photons propagate at the vacuum light speed, c. 
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� � � 

� � � 

� 

cw SPDC—in  which at most one signal-idler pair is observed over the measure
ment interval—it  is appropriate to use Eq. (54) in lieu of the rigorous jointly 
Gaussian state of the signal and idler beams.7 

To exercise what we have just said about the biphoton state, let us use that 
approach to characterize the scheme shown on slide 6 for generating polarization-
entangled photon pairs from SPDC. Here we have two type-II phase-matched, cw 
SPDC sources pumped in antiphased manner.. They need not be operated at fre
quency degeneracy, i.e., the center frequencies for the signal and idler may be ωS = ωI 

so long as ωS + ωI = ωP and kS (ωS )+ kI (ωI ) = kP (ωP ). As shown on slide 6, we have 
oriented the nonlinear crystals for these two sources such that a polarizing beam split
ter is able to direct both signal beams to one of its output ports and both idler beams 
to its other output port. The joint state of the two SPDC sources, from Eq. (54), is 

∞ dω sin(ωΔk�l/2) jωΔk�l/2|ψin� = |0�Sx |0�Iy + 
−∞ 2π 

jκl 
ωΔk�l/2 

e |ωS + ω�Sx |ωI − ω�Iy 

jκl e .⊗ |0�Sy |0�Ix − 
∞ d

2π

ω sin(

ω

ω

Δ

Δ

k�
k

l/

�l/

2

2) jωΔk�l/2|ωS + ω�Sy |ωI − ω�Ix 
−∞ 

(55) 

On the right-hand side of the first line we have only included the state of the x-
polarized signal and the y-polarized idler, and on the second line we have only included 
the state of the y-polarized signal and the x-polarized idler, as the other polarizations 
are all in their vacuum states. The minus sign in the second term on the right-hand 
side of the second line is due to the antiphased pumping.8 

After the polarizing beam splitter, and using the fact that the vacuum terms 
predominate on both lines of Eq. (55), we get the following output state to first order 
of smallness: 

|ψout� = |0�Sx |0�Sy |0�Ix |0�Iy + 

∞ d

2π

ω 
jκl 

sin(

ω

ω

Δ

Δ

k�
k

l/

�l/

2

2) 
ejωΔk�l/2(|ωS + ω�Sx |ωI − ω�Iy − |ωS + ω�Sy |ωI − ω�Ix ). 

−∞ 

(56) 

Equation (56) is a frequency-entangled, polarization-singlet state. Let us exhibit its 
polarization entanglement by returning to the full Gaussian-state characterization for 
the output state from the slide 6 system. 

7The interested reader may want to try to analyze the HOM dip using Eq. (54) as the signal-idler 
input state. 

8Recall that κ is proportional to the complex amplitude of the pump field. So with κ defined for 
one SPDC source, antiphased pumping flips the sign of κ for the other SPDC source. 
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The signal and idler beams at the output ports of the polarizing beam splitter 
on slide 6 are in a zero-mean jointly Gaussian state with the following non-zero 
correlation functions: 

KS
(n

x

) 
Sx 

(τ) = KS
(n

y 

) 
Sy 

(τ) = KI
(

x

n
I
) 
x 
(τ) = KI

(

y 

n
I
) 
y 
(τ ) (57) ⎧ � � 

= K(n)(τ) ≡ 
⎨ 
|
|
Δ
κ|
k

2

�
l 
| 1 − |Δ

|τ
k
|
�|l , for |τ | ≤ |Δk�|l 

(58) ⎩ 
0, otherwise, 

and ⎧ 

(p) (p)
KSxIy 

(τ) = −KSy Ix 
(τ) = K(p)(τ) ≡ 

⎨ 
|Δ
jκ 
k�| , for 0 ≤ τ ≤ |Δk�|l 

(59) ⎩ 0, otherwise, 

where we have continued to assume that Δk� < 0. 
Suppose that we perform the following coincidence counting experiment. We use 

a polarization analysis system to illuminate one photodetector with the i ≡ α�ix + β�iy 

component of the signal beam and we use another polarization analysis system to 
illuminate a second photodetector with the orthogonal, i� ≡ β∗�ix − α∗�iy, polarization 
of the idler beam, where |α|2 + |β|2 = 1. Paralleling what we did for the HOM 
interferometer, we can show that the average number of coincidence counts for this 
setup satisfies � 

CSiIi� 
(T ; Tg) = η2Tg 

∞ 

dτ |KS
(p

iI
) 

i� 
(τ)|2 , (60) 

−∞ 

where 

KS
(p

iI
) 

i� 
(τ) = �[α∗ÊSx (t + τ) + β∗ÊSy (t + τ)][βÊIx (t) − αÊIy (t)]� (61) 

= −|α|2KS
(p

x

) 
Iy 

(τ) + |β|2K(p) 
(τ) = −K(p)(τ), (62) Sy Ix 

so that 

CSiIi� 
(T ; Tg) = 

η2|κ|2lTg 
. (63) 

|Δk�|
Similar calculations—whic h the reader should attempt—yield  

CSi� Ii 
(T ; Tg) = 

η2|
Δ

κ|
k

2

�
lTg 

and CSiIi (T ; Tg) = CSi� Ii� 
(T ; Tg) = 0. (64) 

| | 

These are the continuous-time signatures of singlet-state polarization entanglement, 
cf. the results from Lecture 13 for the a pair of antiphased two-mode parametric ampli
fiers. In particular, when the signal and idler outputs from the polarizing beam splitter 
on slide 6 undergo polarization analysis in an arbitrary common basis, whenever a 
coincidence occurs, the signal and idler detections will have occurred in orthogonal 
polarizations. 
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Photon Twins from an Optical Parametric Amplifier 

Our last task for today will be to develop the continuous-time version of the photon-
twins signature of nonclassical light that we developed earlier this semester within the 
two-mode construct. In effect, we have already seen that signature in the biphoton 
state, i.e., SPDC produces signal and idler photons in pairs via photon fission. How
ever, instead of working with the SPDC source, we shall employ the lumped-element 
optical parametric amplifier model from Lecture 21 to study photon twinning. SPDC 
produces signal-idler pairs at rates ≤ 106 s−1 in typical systems. This pair rate is well 
resolved by the ∼1 ns response times of fast photodetectors. A doubly-resonant OPA 
that is capable of producing 10 dB of quadrature-noise squeezing in a 10 MHz band
width will produce ∼108 signal-idler pairs per second in that bandwidth. Although 
single signal-idler pairs from an OPA can still be resolved by a fast photodetector, 
this source is much closer to the system that experimentalists have actually used for 
photon-twins experiments, viz., the optical parametric oscillator (OPO). The OPO 
is an OPA pumped above its oscillation threshold. Its signal and idler outputs can 
easily reach rates of 1013 photons per second. However, rather than introduce yet 
another χ(2) analysis into the mix, we shall content ourselves with demonstrating the 
photon twins behavior of the OPA. 

The setup of interest is shown on slide 10. The signal and idler outputs from a 
doubly-resonant, type-II phase-matched OPA are separated—w ith a polarizing beam 
splitter—an d directed to ideal (unity quantum efficiency) photodetectors. The re
sulting photocounts, NS and NI , for the time interval 0 ≤ t ≤ T are then combined 
to yield the photocount difference ΔN ≡ NS − NI . In semiclassical photodetection, 
NS and NI are Poisson distributed, given the powers that illuminate their respective 
photodetectors during 0 ≤ t ≤ T . Thus, because the shot noises from different de
tectors are statistically independent, we know that their difference, ΔN , will have a 
variance that satisfies the following shot-noise limit: 

var(ΔN) ≡ �[ΔN − �ΔN�]2� ≥ �NS � + �NI �. (65) 

From quantum theory, however, we expect the variance of ΔN to be zero, because 
signal and idler photons are created in pairs, and we are using ideal photodetectors, 
i.e., ideal photon counters. To probe whether this is really so, we start from the 
quantum observables, ˆ ˆ � ≡ N̂S − NI , whose measurement statistics NS , NI , and ΔN ˆ

coincide with those of the classical random variables NS, NI , and ΔN , where � T � T 

N̂S = dt Êout†
S (t) Êout 

S (t) and N̂I = dt Êout†
I (t) Êout 

I (t), (66) 
0 0 

with { Êout (t) : m = S, I } being the baseband field operators for the OPA’s outputs. m 

The mean and variance calculations that we must perform are similar to, but simpler 
than, what we have already done for HOM interferometry. 
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In Lecture 21 we established that the OPA’s signal and idler outputs were in a 
zero-mean, stationary, jointly Gaussian state whose non-zero correlation functions 
are, 

GΓ e−(1−G)Γ|τ | e−(1+G)Γ|τ |
K(n) (τ) = �Êout†(t)Êout 

2 1 − G 
− 

1 + G
, for m = S, I, (67) mm m m (u)� = 

(p) GΓ e−(1−G)Γ|τ | e−(1+G)Γ|τ |
KSI (τ) = + . (68) 

2 1 − G 1 + G 

Thus, the average signal and idler photocounts obey � T � T G2ΓT 
dt �Êout†(t)Êout dtK(n) (0) = , for m = S, I. (69) �N̂m� = 

0 
m m (t)� = 

0 
mm 1 − G2 

Equation (69) is what we expect: signal and idler photons are created in pairs so the 
average number of signal and idler counts in any T -sec-long interval should coincide. 
Equation (69) implies, 

�Δ�N� = �N̂S � − � N̂I � = 0, (70) 

so that the nonclassical photon-twins signature we are seeking becomes 

2G2ΓT �(Δ�N)2� < �N̂S � + �N̂I � =
1 − G2 

. (71) 

ΔN)2

coincidence count for HOM interferometry. We start from 
Evaluating �( � � mimics, in several respects, what we did to find the average 

�� T 

ΔN)2 dt [Êout†(t)Êout Eout†(t)Êout �( � � = S (t) − ˆI (t)]S I 
0 � T � 

× 
0 

du [Êout†(u)Êout (u) − Êout†(u)Êout (u)] . (72) S S I I 

Then, we combine the product of single integrals into a double integral and use the 
fact that ÊS 

out (t) and ÊI 
out (t) commute with each other and with each other’s adjoint 

but have the δ-function commutator with their own adjoints. This leads us to � T � T 

ΔN)2 = dt �Êout† 
(t)Êout du �Êout† 

(u)Êout �( � � 
0 

S S (t)� + 
0 

I I (u)� 

� T � T 

+ dt du �ÊS 
out† 

(t)ÊS 
out† 

(u)ÊS 
out (t)ÊS 

out (u)�
0 0 � T � T 

+ dt du �Êout† 
(t)Êout† 

(u)Êout (t)Êout (u)�I I I I 
0 0 � T � T 

− 2 
0 

dt 
0 

du �ÊS 
out† 

(t)ÊI 
out† 

(u)ÊS 
out (t)Êout (u)�, (73) I 
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which can be reduced—b y means of the quantum form of Gaussian moment factoring 
(n) (n) (p)

and the specific forms we have for KSS (τ), KSS (τ), and KSI (τ)—to  � T � � 

ΔN)2 =
2G2ΓT 2G2Γ2 

dτ 
|τ | 

(74) �( � � 
1 − G2 

− 
1 − G2 

1 − 
T

e−2Γ|τ | 

−T 

2G2ΓT 1 − e−2ΓT 

= . (75) 
1 − G2 2ΓT 

Equation (75) falls below the semiclassical (shot-noise) limit of 2G2ΓT/(1 − G2) for 
all T > 0, but only equals zero in the limit of T → ∞. Thus, even though we have 
perfectly efficient detectors, the number of signal photons counted exactly matches the 
number of idler photon counted only in the infinite integration-time limit. It is easy 
to understand why that should be so. Although signal and idler photons are created 
in pairs, within the OPA, each photon from any pair may stay inside the doubly-
resonant cavity for many cavity lifetimes, i.e., many times the reciprocal bandwidth 
1/Γ. Only when we have counted photons for many cavity lifetimes are we assured 
that both photons from almost every pair have exited the cavity. Hence it is only in 
this limit that we are guaranteed to get a photocount difference whose variance is well 
below the semiclassical limit. Indeed, Eq. (75) shows that the normalized variance of 
the photocount difference satisfies 

ΔN)2 1, for ΓT � 1�( � � 
(76) 

�N̂S � + �N̂I �
≈ 

1/2ΓT � 1, for ΓT � 1. 

We have plotted this normalized variance in the right panel on slide 11—along  with 
the corresponding semiclassical value of unity—as  a function of ΓT . Also shown on 
that slide is a plot of the normalized variance for the individual photon counts,9 

�[ΔN̂S ]
2� 

= 
�[ΔN̂I ]

2�
, (77) 

�N̂S � �N̂I � 

versus ΓT for G2 = 0.01. These individual variances are super-Poissonian, i.e., they 
exceed the shot-noise limit. Moreover, they are the same as would be found from the 
semiclassical theory of photodetection. That agreement between the semiclassical 
and quantum theories for the individual photocount variances is no accident. As in 
the case of the two-mode parametric amplifier, the reduced density operators for the 
signal and idler beams from our doubly-resonant OPA are classical states, i.e., they 
have proper P representations.10 

9We leave the derivation of these photocount variances as an exercise for the reader. Their 
derivation is similar to what we have done for �( � �.ΔN)2

10A zero-mean Gaussian state that has no phase-sensitive correlation can be shown to be a classical 
state, but we shall not provide the proof. 
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The Road Ahead 

In the next lecture, which will be the last lecture of the semester, we shall wrap up our 
treatment of quantum optical communication by surveying a collection of additional 
applications of non-classical light: binary optical communication with squeezed states; 
phase-sensing interferometry with squeezed states; super-dense coding with entangled 
states; and quantum lithography with “N00N” states. 
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