6.453 Quantum Optical Communication Spring 2009

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.

Quantum Coupled-Mode Equations

- ! Strong, Monochromatic, Coherent-State Pump
- ! Positive-Frequency Signal and Idler Field Operators:

$$
\hat{E}_S^{(+)}(z,t) = \int \frac{\mathrm{d}\omega}{2\pi} \,\hat{A}_S(z,\omega) e^{-j[(\omega_P/2+\omega)t - k_S(\omega_P/2+\omega)z]}
$$
\n
$$
\hat{E}_I^{(+)}(z,t) = \int \frac{\mathrm{d}\omega}{2\pi} \,\hat{A}_I(z,\omega) e^{-j[(\omega_P/2-\omega)t - k_I(\omega_P/2-\omega)z]}
$$

Quantum Coupled-Mode Equations:

<u>rle</u>

$$
\frac{\partial \hat{A}_S(z,\omega)}{\partial z} = j\kappa \hat{A}_I^{\dagger}(z,\omega)e^{j\omega \Delta k'z}
$$
\n
$$
\frac{\partial \hat{A}_I(z,\omega)}{\partial z} = j\kappa \hat{A}_S^{\dagger}(z,\omega)e^{j\omega \Delta k'z}
$$
\nCIPS: **III**

Quantum Input-Output Relation

Two-Mode Bogoliubov Relation

$$
\hat{A}_S(l,\omega) = \mu(\omega)\hat{A}_S(0,\omega) + \nu(\omega)\hat{A}_I^{\dagger}(0,\omega)
$$

$$
\hat{A}_I(l,\omega) = \mu(\omega)\hat{A}_I(0,\omega) + \nu(\omega)\hat{A}_S^{\dagger}(0,\omega)
$$

where

$$
\mu(\omega) = \left(\cosh(pl) - \frac{j\omega\Delta k'l}{2} \frac{\sinh(pl)}{pl}\right) e^{j\omega\Delta k'l/2}
$$
\n
$$
\nu(\omega) = j\kappa l \frac{\sinh(pl)}{pl} e^{j\omega\Delta k'l/2},
$$
\n
$$
p = \sqrt{|\kappa|^2 - (\omega\Delta k'/2)^2}
$$
\nHe CIPS: MIT

Gaussian-State Characterization

- **Signal and Idler at** $z = 0$ are in Vacuum States
- **Signal and Idler at** $z = l$ are in Zero-Mean Gaussian States
- **Baseband Signal and Idler Field Operators:**

$$
\hat{E}_m^{(+)}(l,t) = \hat{E}_m(t)e^{-j(\omega_P t/2 - k_m(\omega_P/2)l)}, \text{ for } m = S, I
$$

Non-Zero Covariance Functions:

$$
K_{SS}^{(n)}(\tau) = K_{II}^{(n)}(-\tau) = \int \frac{d\omega}{2\pi} |\nu(\omega)|^2 e^{j\omega \tau}
$$

$$
K_{SI}^{(p)}(\tau) = \int \frac{d\omega}{2\pi} \mu(-\omega) \nu(-\omega) e^{j\omega(\tau - \Delta k'l)}
$$

Fig. CIPS! III

