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Introduction 

The final major question we shall address this semester is the following. How can 
we create non-classical light beams that exhibit the signatures we’ve discussed in 
our simple one-mode and two-mode analyses? In particular, we will study spon
taneous parametric downconversion and optical parametric amplification in second-
order nonlinear crystals. These closely-related processes have been and continue to 
be the primary vehicles for generating non-classical light beams. Given our inter
est in the system-theoretic aspects of quantum optical communication—and our lack 
of a serious electromagnetic fields prerequesite—we shall tread lightly, focusing on 
the coupled-mode equations characterization of collinear configurations, i.e., we shall 
suppress transverse spatial effects. Nevertheless, we will be able to get to the basic 
physics of these interactions and provide continuous-time versions of the non-classical 
signatures that we discussed in single-mode and two-mode forms earlier this term. 
Today, however, we will begin with a treatment within the classical domain. In the 
two lectures to follow we will convert today’s material into the quantum domain, and 
then explore the implications of that quantum characterization. 

Spontaneous Parametric Downconversion 

Slide 3 shows a conceptual picture of spontaneous parametric downconversion (SPDC). 
A strong laser-beam pump is applied to the entrance facet (at z = 0) of a crystalline 
material that possesses a second-order (χ(2)) nonlinearity. We will only concern our
selves with continuous-wave (cw) pump fields, so this pump beam will be taken to 
be monochromatic at frequency ωP . Even though the only light applied to the crys
tal is at frequency ωP , three-wave mixing in this nonlinear material can result in 
the production of lower-frequency signal and idler waves, with center frequencies ωS 
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and ωI , respectively, that emerge—along with the transmitted pump beam—from the 
crystal’s output facet (at z = l). This process is downconversion, because the signal 
and idler light arises from a higher-frequency pump beam. The process is deemed 
parametric, because the downconversion is due to the presence of the pump modifying 
the effective material parameters encountered by the fields propagating at the signal 
and idler frequencies. It is called spontaneous , because there is no illumination of 
the crystal’s input facet at the signal and idler frequencies. Of course, this zero-field 
input statement is correct in a classical physics description of slide 3. We know, from 
our quantum description of the electromagnetic field, that the positive-frequency field 
operator at the crystal’s input facet must include components at both the signal and 
idler frequencies. In SPDC, the z = 0 signal and idler frequencies are unexcited, i.e., 
in their vacuum states. The action of the pump beam in conjunction with the crys
tal’s nonlinearity is responsible for the excitation at these frequencies that is seen at 
z = l. Thus, although a quantum analysis will be required to understand the SPDC 
process, we will devote the rest of today’s effort to a classical treatment of the slide 3 
configuration. Nevertheless, we shall get a hint of the quantum future because the 
signal and idler frequencies, in the classical theory, will obey ωS + ωI = ωP . Zero-
valued input fields at the signal and idler frequencies cannot account for the energy 
in non-zero signal and idler output fields. Instead, the energy present in these output 
fields must come from the pump beam. Rewriting the preceding frequency condition 
as �ωS + �ωI = �ωP at least suggests that a photon fission process—in which a single 
pump photon spontaneously downconverts into a signal photon plus an idler photon 
such that energy is conserved—is what is happening in SPDC. In fact, such is the 
case. 

Maxwell’s Equations in a Nonlinear Dielectric Medium 

We will start our classical analysis of electromagnetic wave propagation in a χ(2) 

medium from bedrock: Maxwell’s equations for propagation in a source-free region 
of a nonlinear dielectric. In differential form, and without assuming any constitutive 
laws, we have that 

� × �E(�r, t) = − 
∂ 
∂t 

�B(�r, t), Faraday’s law (1) 

� · �D(�r, t) = 0, Gauss’ law (2) 

� × �H(�r, t) = 
∂ 
∂t 

�D(�r, t), Ampère’s law (3) 

� · �B(�r, t) = 0, Gauss’ law for the magnetic flux density, (4) 

where E� (�r, t) is the electric field, D� (�r, t) is the displacement flux density, H� (�r, t) is

the magnetic field, and B� (�r, t) is the magnetic flux density. All of these fields are real
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valued and in SI units. For dielectrics, we can take 

B� = µ0H� (�r, t), (5) 

where µ0 is the permeability of free space, as one of the material’s constitutive laws. 
The other free-space constitutive law is 

D� (�r, t) = �0E� (�r, t), (6) 

where �0 is the permittivity of free space.1 However, for the nonlinear dielectric of 
interest here we will use 

D� (�r, t) = �0E� (�r, t) + P� (�r, t), (7) 

where P� (�r, t) is the material’s polarization, which is a nonlinear function of the electric 
field. 

Our initial objective is to reduce Maxwell’s equations to a wave equation for a 
+z-propagating plane wave. Taking the curl of Faraday’s law, employing the vector 
identity 

�× [�× F� (�r, t)] = �[� · F� (�r, t)] −�2F� (�r, t), (8) 

and Ampère’s law, we get 

∂ ∂2 

�[� · E� (�r, t)] −�2E� (�r, t) = −µ0 
∂t

[�× H� (�r, t)] = −µ0 
∂t2 

D� (�r, t). (9) 

For a +z-propagating plane wave whose electric field is orthogonal to the z axis, the 
preceding result simplifies to 

∂2 ∂2 

E� (z, t) − µ0 D� (z, t) = �0. (10) 
∂z2 ∂t2 

Before moving on to propagation in the nonlinear medium, let’s examine the wave 
solutions to Eq. (10) in free space and in a linear dielectric. Using D� (z, t) = �0E� (ζ, t), 
for free space, Eq. (10) becomes 

∂2 1 ∂2 

E� (z, t) − E� (z, t) = �0, (11) 
∂z2 c2 ∂t2 

where we have used c = 1/
√

�0µ0. It easily verified—recall Lecture 17—that 

E� (z, t) = f(t − z/c)�if , (12) 

1In terms of �0 and µ0 we have that c = 1/
√

�0µ0 is the speed of light in vacuum, as shown in 
Lecture 17. 
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is a solution to Eq. (11) for an arbitrary time function f(t) and unit vector �if in the 
x-y plane.2 Moreover, this field is a +z-going plane wave, as was noted in Lecture 17. 

Now suppose that we are interested in propagation through a linear dielectric. In 
this case, and for the nonlinear case to follow, it is best to go to the temporal-frequency 
domain, i.e., we define the Fourier transform of a field F� (�r, t) by 

F� (�r, ω) = dt F� (�r, t)ejωt. (13) 

The sign convention here is in keeping with our quantum-optics notion of what con
stitutes a positive-frequency field, viz., the inverse transform integral is 

F� (�r, t) = 
dω F� (�r, ω)e−jωt. (14) 
2π 

The constitutive law for a linear dielectric is 

D� (�r, ω) = �0[1 + χ(1)(ω)]E� (�r, ω), (15) 

where the linear susceptibility, χ(1)(ω), is a frequency-dependent tensor, so that the 
polarization, 

P� (�r, ω) = �0χ
(1)(ω)E�(�r, ω), (16) 

need not be parallel to the electric field. The tensor nature of the linear susceptibility 
is the anisotropy that we exploited in our discussion, earlier this semester, of wave 
plates. Thus, if E�(�r, ω) is polarized along a principal axis of the crystal—as we shall 
assume in what follows—we have that 

D� (�r, ω) = �0n 2(ω)E�(�r, ω), (17) 

is the appropriate constitutive relation, where n(ω) is the refractive index at frequency 
ω for the chosen polarization. Now, if we take the Fourier transform of Eq. (10) and 
presume fields with no (x, y) dependence with an electric field polarized along a 
principal axis, we obtain the Helmholtz equation 

∂2 

E�(z, ω) + 
ω2n2(ω)E�(z, ω) = �0. (18) 

∂z2 c2 

The +z-going plane-wave solution to this equation is 

� Ee−j(ωt−kz)].E(z, ω) = Re[ � (19) 

where k ≡ ωn(ω)/c and E� is a constant vector in the x-y plane. 

2To show that Eq. (11) provides a solution to Maxwell’s equations in free space, however, more 
work is needed. Faraday’s law should be used to derive the associated magnetic field, H� (z, t), and 
then it should be verified that E� (z, t) and H� (z, t) are solutions to the full set of Maxwell’s equations. 
See Lecture 17 for more details. 
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For a nonlinear dielectric we shall employ the following frequency-domain consti
tutive relation: 

D� (�r, ω) = �0χ
(1)(ω)E�(�r, ω) + P�NL(�r, ω), (20) 

where χ(1)(ω) is the medium’s linear susceptibility tensor at frequency ω and P�NL(�r, ω) 
is the nonlinear polarization, i.e., P�NL(�r, ω) is a nonlinear function of the electric field. 
Assuming, as before, a +z-going plane wave whose electric field is polarized along a 
principal axis of the χ(1)(ω) tensor, Eq. (18) becomes 

∂2 

E�(z, ω) + 
ω2n2(ω)E�(z, ω) = −µ0ω

2P�NL(z, ω), (21) 
∂z2 c2 

for the nonlinear dielectric. The left-hand side of this equation includes the medium’s 
linear behavior, with its nonlinear character appearing as a source term on the right-
hand side. General solutions to this equation—for arbitrary nonlinearities—are be
yond our reach. In the next section, however, we show how to do a coupled-mode 
analysis that, when converted to quantum form in Lecture 21, will allow us to under
stand how SPDC produces non-classical light. 

Coupled-Mode Equations 

Here we shall delve deeper into propagation through a nonlinear dielectric when that 
material’s nonlinear polarization arises from a second-order nonlinearity. Unlike the 
preceding section, which tried to work in generality, we will now assume that the 
electric field propagating from z = 0 to z = L in the nonlinear crystal consists 
of three +z-going monochromatic plane waves: the frequency-ωP pump beam; the 
frequency-ωS signal beam; and the frequency-ωI idler beam. Furthermore, we will 
assume that ωP = ωS +ωI and that the pump is very strong while the signal and idler 
are very weak. Allowing—as will be necessary to account for the tensor properties of 
the second-order susceptibility—the pump, signal, and idler to have different linear 
polarizations along the crystal’s principal axes, we will take the electric field to be 

E� (z, t) = Re[AS (z)e−j(ωS t−kS z)]�iS + Re[AI (z)e−j(ωI t−kI z)]�iI� �� � � �� � 
signal idler 

+ Re[AP e
−j(ωP t−kP z)]�iP , for 0 ≤ z ≤ l. (22) 

pump 

In this expression: km = ωmnm(ωm)/c for m = S, I, P gives the wave numbers of 
the signal, idler, and pump fields in terms of the refractive indices, nm(ωm), of their 
respective linear polarizations, �im, which are all in the x-y plane. More importantly, 
for what will follow, the signal and idler complex envelopes, AS (z) and AI (z), are 
slowly-varying functions of z, i.e., they change very little on the scale of their field 
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component’s wavelength.3 Also, the strong pump field has been taken to be non-
depleting, i.e., its complex envelope, AP , is a constant.4 These assumptions are 
consistent with SPDC operation. 

For the constitutive relation associated with the preceding electric field we will 
assume that 

�D(z, t) ≈ 
�0n

2 
S (ωS )AS(z)e−j(ωS t−kS z) + cc 

2 
�iS 

+ 
�0n

2 
I (ωI )AI (z)e−j(ωI t−kI z) + cc 

2 
�iI 

+ 
�0n

2 
P (ωP )AP e

−j(ωP t−kP z) + cc 
2 

�iP 

+ 
�0χ

(2)A∗ 
I (z)AP e

−j[(ωP −ωI )t−(kP −kI )z] + cc 
2 

�iS 

+ 
�0χ

(2)A∗ 
S(z)AP e

−j[(ωP −ωS )t−(kP −kS )z] + cc 
2 

�iI , (23) 

where cc denotes complex conjugate. The first three terms on the right in Eq. (23) 
are due to the material’s linear susceptibility. Except for the possibly different signal, 
idler, and pump polarizations, it is the three-wave version of what we exhibited in 
the previous section for a linear dielectric. The last two terms represent the effect 
of the material’s second-order nonlinear susceptibility, χ(2). Strictly speaking, this 
susceptibility is a frequency-dependent tensor that produces a nonlinear polarization 
P�NL(z, t) when it is multiplied by the product of two electric-field frequency compo
nents. In writing Eq. (23) we have suppressed the frequency dependence and tensor 
character by our choice of fixed frequencies and polarizations in Eq. (22), and we 
have only included second-order terms that appear at the signal or idler frequencies, 
as these are the frequencies that will be of interest in what follows, viz., they represent 
coupling between the signal and idler which is mediated by the presence of the strong 
pump beam in the nonlinear crystal. 

Let us substitute Eq. (23) into Eq. (10) and exploit the linear independence of 
ejωt and e−jωt for ω = 0 to restrict our attention to the positive-frequency terms. We 

3This assumption goes by the acronym SVEA, i.e., the slowly-varying envelope approximation. 
4Strictly speaking, this no-depletion assumption cannot be exactly correct, as the pump beam 

supplies the energy for the signal and idler outputs in SPDC. It is a good approximation for SPDC, 
however, because the signal and idler outputs in typical operation are much weaker than the pump 
beam. 
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then find that the electric-field complex envelopes must obey 

∂2 � � 
AS (z)e−j(ωS t−kS z)�iS + AI (z)e−j(ωI t−kI z)�iI + AP e

−j(ωP t−kP z)�iP
∂z2 

1 ∂2 � 
n 2 (ωS )AS (z)e−j(ωS t−kS z)�iS2 S− 

c ∂t2 

+ n 2 
I (ωI )AI (z)e−j(ωI t−kI z)�iI + n 2 

P (ωP )AP e
−j(ωP t−kP z)�iP 

χ(2) ∂2 � 
− 

c ∂t2 
A∗ 

I (z)AP e
−j[(ωP −ωI )t−(kP −kI )z]�iS2 

+ A∗ 
S (z)AP e

−j[(ωP −ωS )t−(kP −kS )z]�iI = �0. (24) 

Performing the z differentiations on the first line of Eq. (24) gives 

∂2 � � 
AS (z)e−j(ωS t−kS z)�iS + AI (z)e−j(ωI t−kI z)�iI + AP e

−j(ωP t−kP z)�iP
∂z2 

= −kS 
2 AS (z) + 2jkS 

∂AS (z) 
e−j(ωS t−kS z)�iS

∂z 

+ −kI 
2AI (z) + 2jkI 

∂AI (z) 
e−j(ωI t−kI z)�iI − kP 

2 AP e
−j(ωP −kP z)�iP , (25) 

∂z 

where we have employed the slowly-varying envelope approximation to suppress terms 
involving ∂2 

Am(z) for m = S, I. Performing the t differentiations on the second and 
∂z2 

third lines of Eq. (24) yields 

1 ∂2 � 
−

c
n 2 

S (ωS )AS (z)e−j(ωS t−kS z)�iS + n 2 
I (ωI )AI (z)e−j(ωI t−kI z)�iI2 ∂t2 

+ n 2 
P (ωP )AP e

−j(ωP t−kP z)�iP 

= kS 
2 AS (z)e−j(ωS t−kS z)�iS + kI 

2AI (z)e−j(ωI t−kI z)�iI + kP 
2 AP e

−j(ωP t−kP z)�iP , (26) 

where we have used km = ωmnm(ωm)/c for m = S, I, P . Using Eqs. (25) and (26) in 
Eq. (24) leads to term cancellations5 that reduce the latter equation to 

2jkS 
∂AS (z) 

e−j(ωS t−kS z) + 
χ(2)ωS 

2 

A∗ 
I (z)AP e

−j[ωS t−(kP −kI )z] �iS
∂z c2 

+ 2jkI 
∂AI (z) 

e−j(ωI t−kI z) + 
χ(2)

2 

ωI 
2 

AS 
∗ (z)AP e

−j[ωI t−(kP −kS )z] �iI = �0, (27) 
∂z c

5These cancellations are to be expected, as the terms in question are those for a linear dielectric 
and km = ωmnm(ωm)/c gives the plane-wave solutions for such media. 
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where we have used ωP = ωS + ωI . 
We will be interested in SPDC systems in which the signal and idler are in or

thogonal linear polarizations. In this case, the preceding equation can be decomposed 
into two coupled-mode equations:6 

∂AS (z)
= j

ωS χ
(2)AP 

A∗ 
I (z)ejΔkz (28) 

∂z 2cnS (ωS ) 

∂AI (z)
= j

ωI χ
(2)AP 

AS 
∗ (z)ejΔkz , (29) 

∂z 2cnI (ωI ) 

for 0 ≤ z ≤ l, where Δk ≡ kP − kS − kI . Equations (28) and (29) should be solved 
subject to given initial conditions at z = 0, i.e., given values for AS (0) and AI (0). 
Once AS (l) and AI (l) are found, the resulting electric field for z > l is then 

E� (z, t) = Re[AS (l)e
−j(ωS t−kS l−ωS (z−l)/c)]�iS + Re[AI (l)e

−j(ωI t−kI l−ωI (z−l)/c)]�iI 

+ Re[AP e
−j(ωP t−kP l−ωP (z−l)/c)]�iP , (30) 

i.e., free-space plane-wave propagation prevails.7 Here we can see why quantum 
mechanics is needed to properly understand the SPDC process shown on slide 3. If 
AS (0) = AI (0) = 0, in our classical analysis, then we get AS(l) = AI (l) = 0 from our 
coupled-mode equations,8 and hence E� (z, t) = Re[AP e

j(ωP t−kP z)]�iP for z > l. 

Solution to the Coupled-Mode Equations 

So far we have been working with Maxwell’s equations—and hence have developed 
coupled-mode equations—in SI units, i.e., the complex envelopes AS (z), AI (z), and 
AP have V/m units. Before solving the coupled-mode equations, it will be convenient 
for us to convert them to photon units, so as to ease the transition we will make—in 
Lecture 21—from the classical solution to the quantum version. The key to making 
this conversion is power flow. 

Consider a monochromatic, +z-going plane wave in an isotropic linear dielectric 
whose electric and magnetic fields are 

E� (z, t) = Re[Ae−j(ωt−kz)]�ix and H� (z, t) = Re[c�0n(ω)Ae−j(ωt−kz)]�iy. (31) 

6If we regard the signal-frequency and idler-frequency components of the total field as modes, 
then these equations clearly couple them through the action of the strong pump beam and the 
crystal’s χ(2) nonlinearity. 

7Our analysis assumes that anti-reflection coatings have been applied to the crystal’s entrance 
and exit facets. 

8If this statement is not immediately obvious, see the next section, in which we present solutions 
to the photon-units form of the coupled-mode equations 
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� 

The time-average power (in W) crossing an area A in a constant-z plane is 

2S(z) = 
c�0n

2

(ω)A |A| . (32) 

Were A to be written in photons/s units—for the chosen area A—we would get9 

S(z) = �ω|A|2 (33) 

for the time-average power (in W) crossing the same area. It follows that 

A|√
photons/s 

= 
c�

2�
0

ω 
A 

A|V/m. (34) 

Making this substitution in Eqs. (28) and (29) leads to the photon-units coupled-mode 
equations, 

∂AS (z) jΔkz ∗jκAI (z)e (35)
=

∂z


∂AI (z)
 jΔkz jκA
∗ 
S(z)e
 (36)
=
 ,


∂z 

for 0 ≤ z ≤ l, where � 

κ ≡ 
2c3�0nS(ω

�
S 

ω

)n
S ω

I (
I 

ω

ω

I

P 

)nP (ωP )A 
χ(2)AP (37) 

is a complex-valued coupling constant that is proportional to the pump’s complex 
envelope and the crystal’s second-order nonlinear susceptibility. 

The preceding photon-units coupled-mode equations have the following solution, 

jΔkl sinh(pl) sinh(pl)
 jΔkl/2A
∗ 
I (0)
AS(l) = cosh(pl) − AS (0) + jκl (38)
e


2 pl
 pl


jΔkl sinh(pl) sinh(pl)
 jΔkl/2∗AS (0) AI (l) = cosh(pl) − AI (0) + jκl , (39)
e

2 pl
 pl


where � 
p ≡ |κ|2 − (Δk/2)2 , (40) 

as the reader may want to verify by substituting these results into the coupled-mode 
equations. Equations (38) and (39) have two interesting features that are worth 

9We have chosen photons/s units, which require us to account for a cross-sectional area, to 
avoid needing an explicit area factor when we examine the continuous-time photodetection statistics 
of our SPDC model. 
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noting at this time. The first concerns phase matching. The second is a prelude to 
our quantum treatment of SPDC. 

Inside the crystal, the monochromatic signal, idler, and pump beams—at frequen
cies ωS , ωI , and ωP , respectively, propagate at their phase velocities, vm(ωm) = ωm/km 

for m = S, I, P . The nonlinear interaction governed by the coupled-mode equa
tions Eqs. (35) and (36) is said to be phase matched when Δk = 0, i.e., when 
ωP /vP = ωS /vS + ωI /vI . For a phase-matched system the coupled-mode equations 
simplify to 

∂AS (z) 
∂z


= jκAI (z)∗ and

∂AI (z) 

∂z

= jκA
∗ ( )z ,S for 0 ≤ z ≤ l, (41)


which shows that the phase angle of the coupling between the signal and idler remains 
the same throughout the interaction. On the other hand, when phase-matching is 
violated, the phase of the coupling between the signal and idler rotates as these 
fields propagate through the crystal. As a result, the solution to the phase-matched 
coupled-mode equations, 

κ
 ∗AS (l) = cosh( κ l)AS (0) + j sinh( κ l)AI (0) (42)
|
 |
 |
 |

|
κ

κ|

∗ 
SAI (l) = cosh( κ l)AI (0) + j sinh( κ l)A (0), (43)
|
 |
 |
 |


|κ|


shows increasing amounts of signal-idler coupling with increasing |κ|l, i.e., with in
creasing pump power or crystal length. In contrast, far from phase matching—when 
|Δk/2| � |κ|—we get p ≈ j|Δk|/2, whence 

sin(Δkl/2)
 jΔkl/2 (44) ∗ 
I (0) AS (l) ≈ [cos(Δkl/2) − j sin(Δkl/2)]AS (0) + jκl A
 e


Δkl/2


AI (l) ≈ [cos(Δkl/2) − j sin(Δkl/2)]AI (0) + jκl 
sin(Δkl/2)


Δkl/2

A
∗ 

S (0)
 jΔkl/2 ,(45)
e


which further reduce to 

AS (l) ≈ AS (0) and AI (l) ≈ AI (0), (46) 

when |Δkl/2| � 1, i.e., when the crystal is long enough that the phase mismatch, 
Δk = 0, rotates the signal-idler coupling phase through many 2π cycles. Phase 
matching is critical to SPDC; in terms of photon fission, for every 106 pump photons, 
we may get only one signal-idler pair from a phase-matched interaction. 

Photon fission is a good place to start our comments about the quantum form of 
the coupled-mode equations. We have already noted that ωP = ωS + ωI is consis
tent with the photon-fission energy conservation principle: �ωP = �ωS + �ωI . The 
momentum of a +z-going single photon at frequency ω is +z-directed with magni
tude �ω. Thus our phase-matching condition, kP = kS + kI , becomes photon-fission 
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momentum conservation, �kP = �kS + �kI , when applied at the single-photon level. 
Photons being produced in pairs smacks of the two-mode parametric amplifier that we 
studied earlier in the semester. That system was governed by a two-mode Bogoliubov 
transformation, 

out in in† out in in†âS = µâS + νâI and âI = µâI + νâS , where |µ|2 − |ν|2 = 1. (47) 

Comparing Eq. (47) with Eqs. (42) and (43) reveals a great similarity. Indeed, if 
we change field complex envelopes and their conjugates to annihilation operators 
and creation operators, respectively, the latter two equations become a two-mode 
Bogoliubov transformation with10 

κ 
µ ≡ cosh(|κ|l) and ν ≡ j 

|κ| 
sinh(|κ|l). (48) 

The Road Ahead 

In the next lecture we shall develop the quantum treatment of SPDC and the optical 
parametric amplifier (OPA), which is SPDC enhanced by placing the nonlinear crys
tal inside a resonant optical cavity. We shall also begin studying the non-classical 
behavior that can be seen in continuous-time photodetection using the outputs from 
SPDC and the OPA. 

10Even for the general case of Δk = 0, changing the field complex envelopes and their conjugates �
into annihilation and creation operators, respectively, converts the classical coupled-mode input-
output relation into a two-mode Bogoliubov transformation. When Δkl/2 � 1, however, that 
two-mode Bogoliubov transformation will have µ ≈ 1 and ν ≈ 0. 

| | 

11



