6.453 Quantum Optical Communication Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

CiPS

September 18, 2008

6.453 Quantum Optical Communication Lecture 5

Jeffrey H. Shapiro

Optical and Quantum Communications Group

RESEARCH LABORATORY OF ELECTRONICS Massachusetts Institute of Technology

www.rle.mit.edu/qoptics

6.453 Quantum Optical Communication — Lecture 5

- Announcements
 - Turn in problem set 2
 - Pick up problem set 2 solution, problem set 3, lecture notes, slides
- Quantum Harmonic Oscillator
 - Number measurements versus quadrature measurements
 - Coherent states and their measurement statistics

Quantum Harmonic Oscillator: Reprise

Operator-Valued Dynamics:

$$\hat{a}(t) = \hat{a}_1(t) + j\hat{a}_2(t) = \hat{a}e^{-j\omega t}$$

Hamiltonian and the Number Operator:

$$\hat{H} = \hbar\omega[\hat{a}_1^2(t) + \hat{a}_2^2(t)] = \hbar\omega[\hat{a}^{\dagger}\hat{a} + 1/2] = \hbar\omega[\hat{N} + 1/2]$$

Heisenberg Uncertainty Principle:

$$\langle \Delta \hat{a}_1^2(t) \rangle \langle \Delta \hat{a}_2^2(t) \rangle \ge \frac{1}{16}$$

rle CiPS: Illi

3

www.rle.mit.edu/qoptics

Quantum Harmonic Oscillator: Reprise

Number Kets:

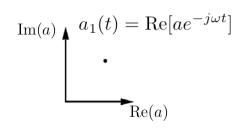
$$\hat{N}|n\rangle = n|n\rangle$$
, for $n = 0, 1, 2, \dots$

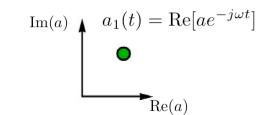
- Orthonormal: $\langle m|n\rangle=\delta_{nm}$
- Complete: $\hat{I} = \sum_{n=0}^{\infty} |n\rangle\langle n|$
- Diagonal representation of number operator: $\hat{N} = \sum_{n=0}^{\infty} n |n\rangle\langle n|$
- Annihilation and creation operators:

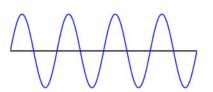
$$\hat{a} = \sum_{n=1}^{\infty} \sqrt{n} |n-1\rangle\langle n|, \quad \hat{a}^{\dagger} = \sum_{n=0}^{\infty} \sqrt{n+1} |n+1\rangle\langle n|$$

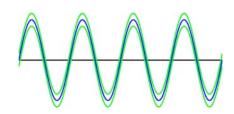
Classical versus Quantum Quadrature Behavior

- Classical Oscillator: Noiseless
- Quantum Oscillator: Noisy









How can we get to the classical limit?

rle CiPS: Illii

5

www.rle.mit.edu/goptics

Quadrature-Statistics of Number Kets

• Quadrature-Measurement Mean Values:

$$\langle n|\hat{a}(t)|n\rangle = \langle n|\hat{a}_1(t)|n\rangle + j\langle n|\hat{a}_2(t)|n\rangle$$

= $\langle n|\hat{a}|n\rangle e^{-j\omega t} = 0$

• Quadrature-Measurement Variances:

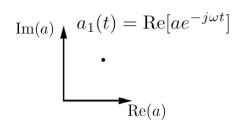
$$\langle n|\Delta \hat{a}_1^2(t)|n\rangle = \langle n|\Delta \hat{a}_2^2(t)|n\rangle = \frac{2n+1}{4}$$

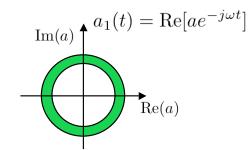
Non-Minimum Quadrature-Uncertainty Product:

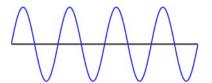
$$\langle n|\Delta \hat{a}_1^2(t)|n\rangle\langle n|\Delta \hat{a}_2^2(t)|n\rangle = \left(\frac{2n+1}{4}\right)^2 > \frac{1}{16}, \text{ for } n \ge 1$$

Classical versus Quantum Quadrature Behavior

- Classical Oscillator: Noiseless
- Quantum Oscillator: $|n\rangle$ State







How can we get to the classical limit?

rle CiPS: Illii

7

www.rle.mit.edu/qoptics

Coherent States

Eigenkets of the Annihilation Operator:

$$\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$$
, for $\alpha = \alpha_1 + j\alpha_2$

Number-ket representation:

$$|\alpha\rangle = \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} e^{-|\alpha|^2/2} |n\rangle$$

Normalized, non-orthogonal:

$$\langle \alpha | \beta \rangle = \exp(-|\alpha|^2/2 - |\beta|^2/2 + \alpha^* \beta)$$

Overcomplete:

$$\hat{I} = \int \frac{\mathrm{d}^2 \alpha}{\pi} |\alpha\rangle\langle\alpha|$$

Coherent-State Measurement Statistics

Number-Operator Measurement:

$$\Pr(\hat{N} \text{ outcome} = n \mid \text{ state is } |\alpha\rangle) = |\langle n|\alpha\rangle|^2 = \frac{|\alpha|^{2n}}{n!} e^{-|\alpha|^2}$$

• Quadrature-Operator Measurements:

$$\langle \alpha | \hat{a}(t) | \alpha \rangle = \langle \alpha | \hat{a}_1(t) | \alpha \rangle + j \langle \alpha | \hat{a}_2(t) | \alpha \rangle$$
$$= \langle \alpha | \hat{a} | \alpha \rangle e^{-j\omega t} = \alpha e^{-j\omega t}$$
$$\langle \alpha | \Delta \hat{a}_1^2(t) | \alpha \rangle = \langle \alpha | \Delta \hat{a}_2^2(t) | \alpha \rangle = \frac{1}{4}$$

Minimum Uncertainty-Product with Equal Variances

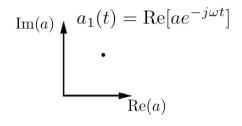
rle CiPS: Illii

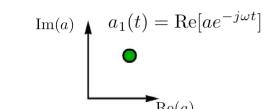
9

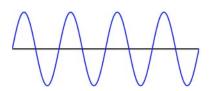
www.rle.mit.edu/qoptics

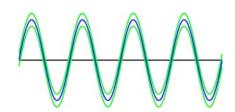
Classical versus Quantum Quadrature Behavior

- Classical Oscillator: Noiseless
- Quantum Oscillator: |lpha
 angle State









THIS is how we get to the classical limit!

Coming Attractions: Lectures 6 and 7

Lecture 6:

Quantum Harmonic Oscillator

- Squeezed states and their measurement statistics
- Probability operator-valued measurement of â
- Lecture 7:

Single-Mode Photodetection

- Direct Detection
- Homodyne Detection

rle CiPS: Uit

11

www.rle.mit.edu/qoptics