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Dirac-notation Quantum Mechanics.


Introduction 

Last time you were introduced to—teased with, really—three examples of how quan
tum optical communication has distinctly non-classical features: quadrature noise 
squeezing, polarization entanglement, and teleportation. In this lecture, we begin 
laying the foundation for understanding all three of these phenomena, and more. 
Our task is to present the essentials of Dirac-notation quantum mechanics. No prior 
acquaintance with this material is assumed. There are three fundamental notions that 
we must establish: state, time evolution of the state, and measurements. The first 
two will be completed in this lecture; the last will spill over into Lecture 3. Moreover, 
although these three concepts are easily stated, they will be accompanied by a variety 
of notational and mathematical details that will comprise most of today’s lecture. 

Quantum Systems and Quantum States 

Slide 3 defines a quantum system and the state of a quantum system. The first 
definition—that of a quantum system—requires no explanation. There are several 
points to be made, however, about the definition of the state of a quantum system. 
First, let us remember what it means to be the state of a classical system. We’ll do so 
by means of two examples from classical physics, one from mechanics, and one from 
circuit theory. After that, we’ll review—and perhaps extend—what you know about 
vector spaces and linear operations on vectors. Here we will use the Dirac notation, 
but we also exhibit two special cases that will help illustrate the points being made. 

The State of a Point Mass 

The state, at time t0, of an m-kg point mass that is moving in three-dimensional 
space under the influence of an applied force is its position, ~r(t0), and its momentum, 
p~(t0). The state contains all information about the behavior of the mass prior to time 
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t0 that is relevant to predicting its behavior for t > t0. In particular, if the applied 
force, F~ (t), is known for t0 ≤ t ≤ t1, then ~x(t1) and p~(t1) can be found by solving 

dp~(t) ~ d~r(t) 
= F (t) and m = p~(t), for t0 ≤ t ≤ t1, (1) 

dt dt 

subject to the initial conditions that the position and momentum at time t0 be ~x(t0) 
and ~p(t0), respectively. 

The State of an RLC Circuit 

Consider the parallel RLC circuit shown in Fig. 1. The state of this circuit at time 
t = t0 can be taken to be the charge on its capacitor, Q(t) = Cv(t), and the flux 
through its inductor, Φ(t) = LiL(t).1 

+ 

_ 
v(t)i(t) CLR iL(t) 

Figure 1: The state of this parallel RLC circuit can be taken to be the charge on its 
capacitor, Q(t) = Cv(t), and the flux through its inductor, Φ(t) = LiL(t). 

To find the state at some later time, we can use Kirchhoff’s current law and 
Kirchhoff’s voltage law—plus the v-i relations for the three circuit elements—to show 
that 

d2v(t) dv(t) di(t)
RLC + L + Rv(t) = RL , for t0, (2) 

dt2 dt dt
t ≥

which can be solved, given i(t) for t0 ≤ t ≤ t1 and the initial conditions 

Q(t0) dv(t) ∣ i(t0) v(t0) Φ(t0) 
v(t0) = and = , (3) 

C dt C 
− 

RC 
− 

LC t=t0 

to obtain v(t1) and dv(t)/dt t=t1 . These, in turn, allow us to find |

v(t1) dv(t) ∣ 
Q(t1) = Cv(t1) and Φ(t1) = LiL(t1) = Li(t1) − L − LC , (4) 

R dt t=t1 

proving that knowledge of {Q(t0), Φ(t0)} and {i(t) : t0 ≤ t ≤ t1} is sufficient to 
determine {Q(t1), Φ(t1)}. 

1Because C and L are known constants, it is equivalent to say that v(t0) and iL(t0) comprise the 
state at time t0. Alternatively, we can take v(t0) and dv(t)/dt t=t0 

to be the state. |
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Vector Spaces 

A vector space is a set of elements (vectors), which we’ll denote {|·�}, and complex 
numbers (scalars) with vector addition and scalar multiplication defined and obeying: 

•	 Vector addition is closed . If |x� and |y� are elements of a vector space, then so 
too is |x + y� ≡ |x� + |y�. 

•	 Vector addition is commutative: |x� + |y� = |y�+ |x�. 

•	 Vector addition is associative: (|x� + |y�) + |z� = |x� + (|y� + |z�). 

•	 There exists an identity element, |0a�, such that |x� + |0a� = |x�. 

•	 There exists an additive inverse element, |–x�, such that |x� + |–x� = |0a�. 

Scalar multiplication is closed . If x� is a vector and c is a scalar, then c•	
is also a vector. 

| |cx� ≡ |x� 

•	 Scalar multiplication is distributive: (c1+c2)|x� = c1|x�+c2|x�, and c(|x�+|y�) = 
c|x� + c|y�. 

•	 There is an identity scalar, 1, such that 1|x� = |x�. 

•	 There is a zero scalar, 0, such that 0|x� = |0a�. 
As we progress through this lecture’s general mathematical development, we shall 
carry along the two running examples that we now introduce. 

Example 1: N-D Real Euclidean Space 

The elements of N -D real Euclidean space, RN , are conveniently represented as col
umn vectors, 

  
x1 

 x2 |x� = x ≡




 
..
. 




 
,	 (5) 

xN 

where the {xn} and the scalars are real numbers. That the preceding vector space 
properties are satisfied by RN should be familiar to you from your linear algebra 
prerequisite for 6.453. 

Example 2: Complex-valued, Square-integrable Time Functions on [0, T ] 
The complex-valued, square-integrable time functions, |x� = {x(t) : 0 ≤ t ≤ T }, form 
a vector space L2[0, T ]. Here, by square-integrable, we mean that 

∫	 T 

0	

dt |x(t)| 2 < ∞. (6) 

You should verify that L2[0, T ] has the properties we have listed for a vector space. 
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Inner Product Spaces 

An inner product space is a vector space on which an inner product (dot product) is 
defined. If |x� and |y� are elements of an inner product space, their inner product, 
denoted �x|y� is a complex number. In Dirac terminology, |x� is a ket vector, and 
�x|, which is the adjoint of this ket, is called a bra vector. The bra �x| and the ket 
|y� then form a bra-ket, which is the inner product �x|y� of the vectors |x� and |y�. 
Inner products have the following properties. 

•	 Inner products are conjugate symmetric: �x|y� = �y|x� ∗ . 

•	 If c1 and c2 are complex numbers and |c1x + c2y� = c1|x� + c2|y�, then �c1x + 
∗ ∗ c2y|z� = c1�x|z� + c2�y|z�. 

•	 The length of a vector |x�, given by �x� ≡ �x|x�, is non-negative and equals 
zero if and only if |x� = |0a�. 

•	 Inner products satisfy the Schwarz inequality, 

|�x|y�| ≤ �x|x��y|y�, (7) 

where equality occurs if and only if |x� = c|y� for some scalar c. 

•	 Inner products satisfy the Triangle Inequality, 

�x + y� ≤ �x� + �y�,	 (8) 

where equality occurs if and only = c for some non-negative scalar c.|x� |y�

These properties can be illustrated by our two running examples as follows. 

Example 1: N-D Real Euclidean Space 

The bra vector associated with (5) is its transpose2 

�x| = x T ≡ 
[ 
x1 x2 · · · xN 

] 
,	 (9) 

and the inner product between |x� and |y� in RN is 

N 

�x y� = x T y ≡ xnyn. (10) |
n=1 

This inner product example and its properties should be familiar from your linear 
algebra background. 

2If we had used complex scalars, instead of real scalars, for the elements of x, then its adjoint 
would have been the conjugate transpose. 
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Example 2: Complex-valued, Square-integrable Time Functions on [0, T ]

The bra vector associated with |x� = {x(t) : 0 ≤ t ≤ T } is �x| = {x ∗(t) : 0 ≤ t ≤ T },

and the inner product for x(t) and y(t) in L2[0, T ] is


∫ T 

�x|y� ≡ 
0 

dt x ∗(t)y(t). (11) 

You should verify that this definition satisfies the properties we have listed for an 
inner product. Moreover, the Schwarz inequality, 

∣
∫ T 

∣2 ∫ T ∫ T 

∣ dt x ∗(t)y(t)∣ dt x(t) 2 dt y(t) 2 , (12) 
∣ 

0 
∣ ≤ 

0 

| | 
0 

| | 

with equality if and only if x(t) = cy(t), should be familiar from your linear systems 
class. 

Hilbert Spaces 

A Hilbert space is a complete inner product space. An inner product space is complete 
if every Cauchy sequence converges. Let {|xn� : 1 ≤ n < ∞} be a sequence of vectors. 
This sequence is a Cauchy sequence if and only if for every δ > 0 there is an N such 
that 

�xn − xm� = �xn − xm|xn − xm� < δ for all n,m > N . (13) 

The sequence {|xn� : 1 ≤ n < ∞} converges if and only if there is a vector |x� such 
that for every δ > 0 there is an N such that 

�xn − x� = �xn − x|xn − x� < δ for all n > N . (14) 

All convergent sequences are Cauchy, but the converse need not be true. For ex
ample, consider the set of rational numbers, {x = p/q : p, q = integers}. A Cauchy 
sequence of rational numbers may converge to an irrational number, hence the set of 
rational numbers is not complete. Both of our running examples, RN and L2[0, T ], 
are complete, and hence their inner product spaces are Hilbert spaces. 

Time Evolution 

Slide 4 gives the first of our three axioms for quantum mechanics: it specifies how 
the state of an isolated quantum system—one that does not interact with an external 
environment—evolves in time. There, we have stated equivalent formulations for 
this evolution, one based on a unitary operator and the other based directly on the 
Schrödinger equation. To establish comfort with the former, let’s review some theory 
for linear operators on vector spaces. 
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Linear Operators 

Let HS be the Hilbert space of states for some quantum system S. An operator, 
T̂ , that maps HS into HS has the property that for every |x� ∈ HS there is some 
|y� ∈ HS such that |y� = T̂ |x�. The operator T̂ is a linear operator if it obeys the 
superposition principle, i.e., 

T̂ (c1|x� + c2|y�) = c1(T̂ |x�) + c2(T̂ |y�). (15) 

At this juncture it is worthwhile to define the adjoint , T̂ †, of a linear operator of T̂ . 
The adjoint operator obeys 

�y|(T̂ |x�) = �x|(T̂ † |y�) ∗ , for all |x�, |y�. (16) 

Once more, it is worth examining these properties in the context of our two running 
examples. 

Example 1: N-D Real Euclidean Space 

A linear operator, T̂ , that maps RN into RN is an N ×N matrix of real numbers 
  

 
T11 T12 · · · T1N 

 
T̂ = T ≡ 



 
T

..

. 
21 T

..

. 
22 · · · 

..

. 
T2

..

. 
N 




 , (17) 

TN1 TN2 TNN · · · 

and y = |y� = T̂ |x� = Tx is found by matrix-vector multiplication, 

N 

yn = Tnmxm. (18) 
m=1 

It is now easy to see that the adjoint operator, T̂ †, associated with T̂ is the transpose 
of the T matrix, viz., 

  
T11 T21 TN1 

 
· · · 

 
T̂ † = TT ≡ 

 
T
.
. 

12 T
.
. 

22 · · · 
.
. 

TN
.
. 
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 . (19) . . . . 
  
T1N T2N TNN · · · 

Example 2: Complex-valued, Square-integrable Time Functions on [0, T ]

A linear operator, T̂ that maps L2[0, T ] into L2[0, T ] is a complex-valued function of

two time variables, T (t, u), and |y� = T̂ |x� is found from the superposition integral,


∫ T 

y(t) = du T (t, u)x(u). (20) 
0 
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Here, in order to ensure that y(t) is square integrable, T (t, u) must satisfy a regularity 
condition, e.g., 

∫ T ∫ T 

0 

dt 
0 

du |T (t, u)| 2 < ∞. (21) 

The adjoint operator, T̂ †, associated with T̂ = T (t, u) is T̂ † = T ∗(u, t), i.e., 

∫ T 

T̂ † |y� = 
0 

du T ∗(u, t)y(u). (22) 

In our development and application of Dirac-notation quantum mechanics we will 
need to know about some special classes of linear operators. 

A linear operator is said to be Hermitian, i.e., self-adjoint, if it satisfies T̂ † = T̂ .• 

• The identity operator, Î, has the property that Î|x� = |x� for all |x�. 

The inverse of a linear operator, denoted T̂−1, is such that T̂−1T̂ = T̂ T̂−1 = I. ˆ• 
BUT, not all linear operators have inverses. 

A linear operator Û is unitary if Û−1 = Û † . Unitary operators have the property • 
that they preserve lengths: 

�Û |x�� 2 = (�x|Û †)(Û |x�) = �x|(Û †Û)|x� = �x|Î|x� = �x|x� = �x� 2 . (23) 

You can make yourself comfortable with the manipulations performed in these 
equations by comparing them with the corresponding results for the vector space 

NR : 
�Ux� 2 = (Ux)T (Ux) = x TUTUx = x T Ix = x T x = 2 . (24) �x� 

Unitary operators also preserve inner products, i.e., 

(Û |x�)†(Û |y�) = �x|(Û †Û)|y� = �x|y� for all |x�, |y�. (25) 

The physical importance of unitary operators in Axiom 1 should now be apparent. 
A ket that represents a finite-energy state of a quantum system at time t0 has unit 
length. If that system is isolated—so that its evolution is unitary—then its state at 
some later time t1 will also have unit length. Mathematically, a unitary operation 
is a rotation of coordinates, perhaps augmented by inverting some of the axes. You 
should check that in R2 the operator 

cos(θ) sin(θ)
U = , (26) − sin(θ) cos(θ) 

is both unitary—so that UTU = UUT = I, where I is the 2×2 identity matrix—and 

a rotation of coordinates by θ. 
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Observables and Quantum Measurements 

Slide 5 presents the second and third of our three axioms for quantum mechanics. An 
observable, i.e., a measurable dynamical variable of a quantum system is represented 
by an Hermitian operator with a complete set of eigenkets. For our classical point 
mass, observables would include the position and momentum vectors and the energy. 
For our classical RLC circuit, observables would include all the voltages and currents 
in the circuit, as well as the the energies stored in the inductor and the capacitor. 
Before we are ready to make use of these axioms, we should review eigenkets and 
eigenvalues, both in a general setting and for our two running examples. 

Eigenkets and Eigenvalues 

Let Ô be an observable. Because Ô is Hermitian, it has eigenkets {|o�} and associated 
eigenvalues {o} that obey 

Ô|o� = o|o�, (27) 

i.e., the applying the operator to one of its eigenkets results in scalar multiplication— 
by the associated eigenvalue—of that eigenket. It is conventional to label eigenkets 
by their associated eigenvalues. 

Example 1: N-D Real Euclidean Space 

For the vector space RN , this eigenket-eigenvalue relation becomes 

Oo = oo, (28) 

which can be rearranged to read 

(O − oI)o = 0, where I is the identity matrix, and 0 is the zero vector. (29) 

Thus, for there to be a non-trivial, o = 0, solution, then o must satisfy the charac
teristic equation 

det(O − oI) = 0. (30) 

For O a real, symmetric matrix, there are N real roots to this equation, although 
some may be degenerate. Once the eigenvalues have been determined, the eigenkets 
are found by using those values in the eigenket-eigenvalue relation. 

Example 2: Complex-valued, Square-integrable Time Functions on [0, T ] 
For the vector space L2[0, T ], the eigenket-eigenvalue relation is the Fredholm integral 
equation 

∫ T 

duO(t, u)o(u) = oo(t), for 0 ≤ t ≤ T . (31) 
0 

The identity operator for L2[0, T ] is the impulse (Dirac delta) function, δ(t − u), 
because 

∫ T 

du δ(t − u)x(u) = x(t), for 0 ≤ t ≤ T . (32) 
0 
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Here are some fundamental properties of eigenkets and eigenvalues that we shall 
need and which you will explore on Problem Set 1. 

•	 The eigenvalues are real valued. 

The eigenkets associated with distinct eigenvalues are orthogonal, i.e., if o and • 
′	 ′ o	 are distinct eigenvalues of Ô, then their associated eigenkets satisfy �o|o � = 0. 

Eigenkets can be normalized to have unit length, i.e., we can assume that �o o� = •	
1. 

|

•	 If there are M linearly independent eigenkets that have the same eigenvalue, 
then these can be converted into M orthonormal eigenkets that have this eigen
value. 

Outer Product Notation and its Uses 

Suppose that |x� and |y� are kets in a Hilbert space HS . Then it should be self
evident that the outer product, |x��y| is a linear operator that maps HS into HS . In 
particular, for any |w�, |z� ∈ HS and |c1w + c2z� ≡ c1|w� + c2|z� we have that 

(|x��y|)|c1w + c2z� = |x�(c1�y|w�+ c2�y|z�),	 (33) 

where �y|w� and �y|z� are scalars. 
Outer products give us some very useful operator representations. For Ô an 

observable with a discrete (or even countable) set of orthonormal eigenkets {|on�} 
and associated eigenvalues {on}, we have that 

Ô = on|on��on|,	 (34) 
n 

as you will show on Problem Set 1. If the eigenkets are complete, then any |x� ∈ HS 

can be represented as a linear combination of these eigenkets: 

|x� = 
n 

xn|on�,	 (35) 

where the coefficients {xn}, depend on |x�. Because the eigenkets have been taken 
to be orthonormal, we have that these coefficients can be found from projection onto 
the eigenkets: 

xn = �on|x�.	 (36) 

It then follows that the eigenkets resolve the identity operator in the sense that 

Î = |on��on|,	 (37) 
n 
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which is something that you will also prove on Problem Set 1. As usual, it’s worth 
grounding our abstract notions by referring them to the running examples of RN and 
L2[0, T ]. 

Example 1: N-D Real Euclidean Space 

The standard orthonormal basis for RN is {1n : 1 ≤ n ≤ N}, where 1n has its nth 
element equal to unity and all others equal to zero. Then, it should be clear that 

  
x1 

  
	 .  has xn = n x, (38) x ≡


 x
.. 

2 



 
1T 

xN 

and the N ×N identity matrix satisfies 

N 

I = 1n1
T
n . (39) 

n=1 

Furthermore, if U is any real-valued, N ×N unitary matrix, then 

en ≡ U1n for 1 ≤ n ≤ N,	 (40) 

defines another orthonormal basis for RN . 

Example 2: Complex-valued, Square-integrable Time Functions on [0, T ] 
The complex sinusoids comprise an orthonormal basis for L2[0, T ], viz., 

j2πnt/T e
φn(t) ≡ √

T 
for −∞ < n < ∞,	 (41) 

satisfy 
∫	 T 1, for n = m 

dt φ∗ (t)φm(t) = δnm ≡ (42) n
0	 0, for n = m, 

and any x(t) ∈ L2[0, T ] can be represented in the Fourier series 

∞ 
∑ j2πnt/T e

x(t) = xn √
T

, for 0 ≤ t ≤ T ,	 (43) 
n=−∞ 

where 
∫ T	 ∫ T1 

xn = dt φn
∗ (t)x(t) = dt x(t)e −j2πnt/T . (44) 

0 

√
T 0 

We also have that the identity operator for L2[0, T ] has the following series represen
tation: 

∞	 ∞ 
∑	 ∑ −j2πn(t−u)/T e

δ(t − u) = φ∗ (t)φn(u) =	 , for 0 ≤ t, u ≤ T . (45) n T 
n=−∞ n=−∞ 
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Measurement Statistics 

Axioms 3 and 3a point to an essential way in which quantum mechanics diverges 
from classical physics. When a measurement is made on a classical system whose 
state is known, then there is no limit to the precision of that measurement, i.e., there 
is no fundamental requirement that classical measurements be noisy. Such is not the 
case in quantum mechanics. Even if the state of the system is known, the outcome of 
measuring an observable is, in general, a random variable. The state of the system and 
the observable that has been chosen for measurement determine the statistics of the 
resulting outcome according to the prescription given on Slides 5 and 6, for the cases of 
countable and uncountable eigenvalues, respectively. In both cases, the measurement 
outcome will be one of the eigenvalues, and the measurement statistics are obtained 
by projection of the state onto the associated eigenkets. Because calculating and 
manipulating the statistics of quantum measurements are so important to what we 
will cover this semester, we need to take the time now to pin down the fundamental 
ideas. 

Consider an observable Ô with distinct, discrete eigenvalues {on}. The associated 
orthonormal eigenkets, {|on�}, obey 

�on|om� = δnm. (46) 

If we measure this observable when the system is in state |ψ�, then Axiom 3 states 
that the outcome on will occur with the following probability 

Pr(on) = |�on|ψ�| 2 , (47) 

Let’s see that this axiom consistent with probability theory, which holds that proba
bilities must lie between 0 and 1, and that summing the probabilities of all possible 
disjoint outcomes must equal 1. That the probabilities in (47) are non-negative fol
lows immediately from its right-hand side being the squared magnitude of an inner 
product. That these probabilities do not exceed 1 follows from the Schwarz inequality, 

(48) |�on|ψ�| 2 ≤ �on|on��ψ|ψ�, 

and |on�, |ψ� both having unit length. To show that the total probability is 1, we 
argue as follows: 

Pr(on) = |�on|ψ�| 2 = �ψ|on��on|ψ� = �ψ| |on��on| |ψ� (49) 
n n n n 

= �ψ|Î|ψ� = �ψ|ψ� = 1. (50) 

The situation is more complicated for observables that have a continuum of eigen
values.3 To see what is involved, let Ô be an observable whose eigenvalues are 

3Examples include position and momentum, and, as we will see in considerable depth later, the 
quadrature components of the electromagnetic field. 
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{o : −∞ < o < ∞} and non-degenerate. The eigenket-eigenvalue relation now 
leads to infinite-length eigenkets that satisfy the orthonormality relation 

′ ′ �o|o � = δ(o − o ), (51) 

from which it follows that 
∫ ∞ 

Ô = 
−∞ 

do o|o��o|, (52) 

and 
∫ ∞ 

Î = 
−∞ 

do |o��o|, (53) 

so that for any |x� ∈ HS we get 

∫ ∞ ∞ 

|x� = do x(o)|o�, with x(o) ≡ do �o|x�. (54) 
−∞ −∞ 

According to Axiom 3a, when we measure this observable, with the system being in 
state |ψ�, the probability density for getting the value o is 

p(o) = |�o|ψ�| 2 , for −∞ < o < ∞. (55) 

To check that this probability density specification is consistent with classical prob
ability theory, we note that p(o) ≥ 0 and 

∫ ∞ ∫ ∞ ∫ ∞ 

−∞ 

do p(o) = 
−∞ 

do |�o|ψ�| 2 = 
−∞ 

do �ψ|o��o|ψ� (56) 

(
∫ ∞ 

= �ψ do |o��o| |ψ� = �ψ|Î|ψ� = �ψ|ψ� = 1, (57) 
−∞ 

and consistency is proven. 
A few final comments and we will be done for today. First, we note that if—and 

only if—the quantum state is an eigenket of the observable that is measured do we 
get a non-random outcome. in particular, for an observable with discrete eigenvalues, 
if |ψ� = |om�, then Axiom 3 shows that 

Pr(on) = |�on|ψ�| 2 = |�on|om�| 2 = |δnm| 2 = δnm. (58) 

Now, because the eigenkets of an observable whose eigenvalues form a continuum are 
of infinite length, it is impossible to avoid randomness when this observable is mea
sured and the state of the system has finite energy. Finally, we point to the Projection 
Postulate, which appears on Slide 6. This postulate, which provides the means for 
studying what happens to a quantum system after a measurement has been made, 
is found in standard introductions to quantum mechanics. However, it will not play 
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a strong role in our work, because we will be concerned with photodetection mea
surements, which are invariably annihilative, i.e., the photons—which comprised the 
quantized light field that was measured—get destroyed in the measurement process. 
Nevertheless, the Projection Postulate is worth citing because—for those quantum 
systems and measurements to which it applies—it makes clear why we cannot use 
repeated measurements to circumvent the fundamental randomness inherent in Ax
ioms 3 and 3a. 

The Road Ahead 

Believe it or not, you have now seen almost all of the foundations of quantum me
chanics that we will need for the entire semester. Next lecture we complete this 
foundational work by: continuing our work on quantum measurements; converting 
the Schrödinger picture of quantum mechanics—which is what we have been doing 
so far—into the equivalent (but more convenient for quantum optics) Heisenberg pic
ture; and deriving the Heisenberg uncertainty principle. After that, we will be ready 
to tackle the quantum harmonic oscillator, which we will later learn can represent a 
single mode of the electromagnetic field. 
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