
Project 1 – Meeting the Master
• Set up for the design/code review

– You should contact your Master as soon as you get the enabling
email

– Review Group adjustments must be done by tonight

• Prepare for the review!
– “Opening statement”

• Look for insights to help with the final
– See if you can come close to the best performance
– Make sure you understand the sharing policy

• The MITPOSSE is there to help you! They are volunteers.
Accord them your greatest respect.

Performance Engineering with
Profiling Tools

Reid Kleckner

John Dong

Agenda

• Theory/Background: Profiling Tools

• 2 Interactive Walkthroughs:

– Matrix Multiply

• Simple cache ratio measurements using the profiler

– Branchless Sorting

• Optimizing instruction-level parallelism / pipelining

• Real example of how the 6.172 staff used the profiler

Theory

• “Premature optimization is the root of all
evil”- Knuth

• Should focus on optimizing hotspots

• Project 1: Worked with small programs with
easy-to-spot hotspots

• Real world codebases much bigger: Reading
all the code is a waste of time (for optimizing)

• Profiling: Identifies where your code is slow

What is the bottleneck?

• Could be:
– CPU

– Memory

– Network

– Disk

– SQL DB

– User Input (probably not this class)

• Solution depends heavily on the problem

• Today: Focus on CPU and Memory

Profiling Tools
In order to do.. You can use…

Manual Instrumentation printf, (or fancy variants
thereof)

Static Instrumentation gprof

Dynamic Instrumentation callgrind, cachegrind,

DTrace

Performance Counters oprofile, perf

Heap Profiling massif, google-

perftools

Other tools exist for Network, Disk IO, Software-specific, …

TODAY: perf

Event Sampling

• Basic Idea:

– Keep a list of where “interesting events” (cycle,
branch miss, etc) happen

• Actual Implementation:

– Keep a counter for each event

– When a counter reaches threshold, fire interrupt

– Interrupt handler: Record execution context

• A tool (perf) turns data into useful reports

Intel Performance Counters

• CPU Feature: Counters for hundreds of events
– Performance: Cache misses, branch misses,

instructions per cycle, …
– CPU sleep states, power consumption, etc (not

interesting for this class)

• Today & Project 2.1: We’ll cover the most useful
CPU counters for this class

• Intel® 64 and IA-32 Architectures Software
Developer's Manual: Appendix A lists all counters
– http://www.intel.com/products/processor/manuals/i

ndex.htm

http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm

Linux:
Performance Counter Subsystem

• New event sampling tool (2.6.31 and above)

– Older tools: oprofile, perfmon

• Can monitor software and hardware events

– Show all predefined events: perf list

– Define your own performance counters…

• On your machine: perfin linux-tools

https://perf.wiki.kernel.org/

https://perf.wiki.kernel.org/index.php/Main_Page

Demo 1: Matrix Multiply

intmatrix_multiply_run(const matrix* A, const matrix* B, matrix* C)

{

inti, j, k;

for (i = 0; i< A->rows; i++) {

for (j = 0; j< B->cols; j++) {

for (k = 0; k< A->cols; k++) {

C->values[i][j] +=

A->values[i][k] * B->values[k][j];

}

}

}

}

Divide these two to get L1 miss rate

Demo #1: Matrix Multiply
(Inner Loop Exchange)

intmatrix_multiply_run(const matrix* A, const matrix* B,

matrix* C)

{

inti, j, k;

for (i = 0; i< A->rows; i++) {

for (k = 0; k< A->cols; k++) {

for (j = 0; j< B->cols; j++) {

C->values[i][j] +=

A->values[i][k] *

B->values[k][j];

}

}

}
}

intmatrix_multiply_run(const matrix* A, const

matrix* B, matrix* C)

{

inti, j, k;

for (i = 0; i< A->rows; i++) {

for (j = 0; j< B->cols; j++) {

for (k = 0; k< A->cols; k++) {

C->values[i][j] +=

A->values[i][k] *

B->values[k][j];

}

}

}
}

Case Study: Sorting & Branching
(What the 6.172 Staff Did Yesterday)

• Demo:

– Using QuickSort to sort 30 million integers

Case Study: Sorting & Branching

• Quicksort: pivoting = unpredictable branches:

while (left < right) {

while (left < right && *left <= pivot) left++;

while (left < right && *right > pivot) right--;

if (left < right) swap(left, right);

}

Case Study: Sorting & Branching

• Let’s try mergesort!

staticvoidbranch_merge(long *C, long *A, long *B, ssize_tna, ssize_tnb)

{

while (na>0&&nb>0) {

// We want: *C = min(*A, *B); then increment *A or *B accordingly

if (*A <= *B) {

*C++ = *A++; na--;

} else {

*C++ = *B++; nb--;

}

}

while (na>0) {

*C++ = *A++;

na--;

}

while (nb>0) {

*C++ = *B++;

nb--;

}
}

Demo: Profile Mergesort

Case Study: Sorting & Branching

• Our mergesort is slower than quicksort!
– Reason: Still mispredicting branches

• What’s wrong? Caching or Branching?
– Nehalem vs. Core2: Faster cache; deeper pipeline

• L1 Hit: ~3-4 cycles; L2 Hit: ~15 cycles

• Branch Mispredict: ~16-24 cycles

– Bad branch predictions might be as undesirable as
bad memory access patterns

– Might be worth it to optimize
mergesort’sbranching behavior

Case Study: Sorting & Branching
Getting rid of mergesort branching:

staticvoidbranch_merge(long *C, long *A, long *B,

ssize_tna, ssize_tnb)

{

while (na>0&&nb>0) {

// We want: *C = min(*A, *B); then increment *A or *B

accordingly

if (*A <= *B) {

*C++ = *A++; na--;

} else {

*C++ = *B++; nb--;

}

}

[…]

}

staticvoidbranch_merge(long *C, long *A, long *B,

ssize_tna, ssize_tnb)

{

while (na>0&&nb>0) {

// We want: *C = min(*A, *B); then increment *A or *B

accordingly

intcmp = (*A <= *B);

long min = *B ^ ((*B ^ *A) & (-cmp));

*C++ = min;

A += cmp;

B += !cmp;

na -= cmp;

nb -= !cmp;

}

[…]

}

Demo: Profile Branchless Mergesort

• Must record before annotating.

• Annotate takes in function name to annotate
around. msipwas one of the recursive merging
functions that called the merge function.

Doing Better
(aka: GRR Stupid Compiler!)

cltq: Sign-extend %eax to 64-bits, and place in %rax

Doing Better
(aka: GRR Stupid Compiler!)

staticvoidbranch_merge(long *C, long *A, long *B,

ssize_tna, ssize_tnb)

{

while (na>0&&nb>0) {

// We want: *C = min(*A, *B); then increment *A or *B

accordingly

long cmp = (*A <= *B);

long min = *B ^ ((*B ^ *A) & (-cmp));

*C++ = min;

A += cmp;

B += !cmp;

na -= cmp;

nb -= !cmp;

}

[…]

}

staticvoidbranch_merge(long *C, long *A, long *B,

ssize_tna, ssize_tnb)

{

while (na>0&&nb>0) {

// We want: *C = min(*A, *B); then increment *A or *B

accordingly

intcmp = (*A <= *B);

long min = *B ^ ((*B ^ *A) & (-cmp));

*C++ = min;

A += cmp;

B += !cmp;

na -= cmp;

nb -= !cmp;

}

[…]

}

Demo: Profile Branchless Mergesort:
Take 2: (int long)

Doing Better
(aka: GRR Stupid Compiler!)

BEFORE: 11 instructions
AFTER: 8 instructions

More Compiler Stupidity:
Complicated Negations

cmp: Stores result to CF
sbb arg1, arg2: arg2 = (arg1 – arg2) - CF

More Compiler Stupidity:
Complicated Negations

staticvoidbranch_merge(long *C, long *A, long *B,

ssize_tna, ssize_tnb)

{

while (na>0&&nb>0) {

// We want: *C = min(*A, *B); then increment *A or *B

accordingly

long cmp = (*A <= *B);

long min = *B ^ ((*B ^ *A) & (-cmp));

*C++ = min;

A += cmp;

B += 1-cmp;

na -= cmp;

nb -= 1-cmp;

}

[…]

}

staticvoidbranch_merge(long *C, long *A, long *B,

ssize_tna, ssize_tnb)

{

while (na>0&&nb>0) {

// We want: *C = min(*A, *B); then increment *A or *B

accordingly

long cmp = (*A <= *B);

long min = *B ^ ((*B ^ *A) & (-cmp));

*C++ = min;

A += cmp;

B += !cmp;

na -= cmp;

nb -= !cmp;

}

[…]

}

Demo: Profile Branchless Mergesort:
Take 3: (!cmp 1-cmp)

More Compiler Stupidity:
Complicated Negations

%sil: Lower byte of %rsi

Final mov and sub have parallelism; fewer “pointless” registers
Fewer ALU ops; Nehalem: only 3 of 6 execution ports have ALUs

Results of Sort Optimizations

Name Runtime (s) InsnsPer Clock
(IPC)

Branch Miss Rate

QuickSort 4.18 0.813 11.5%

MergeSort 5.04 (+20%) 1.105 10.3%

Branchless
Mergesort

4.59 (-8%) 1.762 1.7%

Branchless
Mergesort (int
long)

4.05 (-11.7%) 1.740 1.8%

Branchless
Mergesort (!cmp
1-cmp)

3.77 (-6.9%) 1.743 1.8%

Overall: 10.8% Speedup over QuickSort;
33.6% speedup over branching MergeSort

Conclusions

• Profile before you optimize

• Optimize iteratively:

– Use profiling with intuition

• Look at the annotated assembly

– Don’t assume the compiler optimizes everything

– Nudge the compiler in the right direction

• Learn through practice – try these tools
yourself (Project 2)

MIT OpenCourseWare
http://ocw.mit.edu

6.172 Performance Engineering of Software Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

