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Final Project
Design review with your Masters

Competition on Dec 9th

Akamai Prize for the winning team

Celebration / demonstration at Akamai HQ 

 iPOD nano for each team member!

© Saman Amarasinghe 2008



Scaling Up
Cluster Scale

Data Center Scale

Planet Scale
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Cluster Scale
Running your program in Multiple Machines

Why?

Parallelism  Higher Throughput and Latency

Robustness  No single point of failure 

Cost savings  Multiple PCs are lot cheaper than a mainframe

Programming Issues

Parallel programming with message passing

Robustness  tolerating failure 

© Saman Amarasinghe 2008
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Shared vs. Distributed Memory

© Saman Amarasinghe 2008
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Shared Memory vs. Message Passing
Shared Memory

All Communication via. Memory

Synchronization via. Locks 

• Locks get translated into memory actions

Message Passing

Communication via. explicit messages 

Synchronization via. synchronous messages

© Saman Amarasinghe 2008

10



Orion 4x4 Send/Recv Times

7From  a slide by Duncan Grove @ Adelaide University

Courtesy of Duncan Grove. Used with permission.



Anatomy of a message

© Saman Amarasinghe 2008

Application

OS

NIC

Network Hardware

Application

OS

NIC

Network Hardware

12



Non-Buffered Blocking 

Message Passing Operations 

When sender and receiver do not reach communication 

point at similar times, there can be considerable idling 

overheads.

``Introduction to Parallel Computing'', Addison Wesley, 2003

16

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
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Buffered Blocking 

Message Passing Operations

Blocking buffered transfer protocols: 

 (a) in the presence of communication hardware with buffers at send and 

receive ends

 (b) in the absence of communication hardware, sender interrupts receiver 

and deposits data in buffer at receiver end.

``Introduction to Parallel Computing'', Addison Wesley, 2003

18
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Non-Blocking 

Message Passing Operations

Non-blocking non-buffered send and receive operations 

 (a) in absence of communication hardware; 

 (b) in presence of communication hardware.

``Introduction to Parallel Computing'', Addison Wesley, 2003

20
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MPI Language
Emerging standard language for cluster programming

Machine independent  portable

Features

Each machine has a process

• Its own thread of control

• Its own memory

Each process communicate via messages

• Data that need to be communicated will get packaged into a message 

and sent

• Addresses in each process may be different 

– Cannot communicate pointers

© Saman Amarasinghe 2008
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#include "mpi.h" 

#include <stdio.h> 

int main(int argc, char * argv[]) 

{ 

int numtasks, myid, dest, source, rc, count, tag=1; 

char inmsg, outmsg='x'; 

MPI_Status Stat; 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD,  &numtasks);     

MPI_Comm_rank(MPI_COMM_WORLD,  &myid); 

if (myid== 0) { 

dest = 1; 

source = 1; 

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD,  &Stat); 

} else if (myid== 1) { 

dest = 0; 

source = 0; 

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD,  &Stat); 

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

} 

rc = MPI_Get_count(&Stat, MPI_CHAR, &count); 

MPI_Finalize(); 

}
© Saman Amarasinghe 2008 From llnl.gov website
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#include "mpi.h" 

#include <stdio.h> 

int main(int argc, char * argv[]) 

{ 

int numtasks, myid, next, prev, buf[2], tag1=1, tag2=2; 

MPI_Request recv_reqs[2], send_reqs[2]; 

MPI_Status stats[4]; 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD,  &numtasks); 

MPI_Comm_rank(MPI_COMM_WORLD,  &myid);  

prev = (myid-1)%numtasks; 

next = (myid+1)%numtasks; 

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &recv_reqs[0]); 

MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &recv_reqs[1]); 

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &send_reqs[0]); 

MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &send_reqs[1]); 

MPI_Waitall(2, recv_reqs, stats); 

{ do some work } 

MPI_Waitall(2, send_reqs, stats); 

MPI_Finalize(); 

}

© Saman Amarasinghe 2008 From llnl.gov website

25

Courtesy of Lawrence Livermore National Laboratory. Used with permission.



15

Example:  PI in C -1

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)  {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

Intro to MPI by William Gropp & Ewing Lusk, ANL

27

Courtesy of William Gropp. Used with permission.
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Example:  PI in C - 2

h   = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

return 0;

}

Intro to MPI by William Gropp & Ewing Lusk, ANL

28
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Correctness Issues
Deadlocks

Blocking send/receives can lead to deadlocks

Exhaustion of resources can also lead to deadlocks (next slides)

Stale data

Need to make sure that up-to-date information is communicated

Robustness

Single box is very reliable. And when fails it is catastrophic

A cluster has a lot more failures

• But you have a chance of making a program more robust

© Saman Amarasinghe 2008
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Sources of Deadlocks

Send a large message from process 0 to process 1

 If there is insufficient storage at the destination, the send must wait for 

the user to provide the memory space (through a receive)

What happens with

Process 0 Process 1

Send(1) Send(0)

Recv(1) Recv(0)

18

31

• This is called “unsafe” because it depends on the availability of 

system buffers
Courtesy of William Gropp. Used with permission.

Intro to MPI by William Gropp & Ewing Lusk, ANL



Some Solutions to the “unsafe” 

Problem

Order the operations more carefully:
Process 0 Process 1

Send(1) Recv(0)

Recv(1) Send(0)

19

• Use non-blocking operations:

Process 0 Process 1

Isend(1) Isend(0)

Irecv(1) Irecv(0)

Waitall Waitall

Intro to MPI by William Gropp & Ewing Lusk, ANL

Courtesy of William Gropp. Used with permission.



Performance Issues
Occupancy Costs

Latency Tolerance 

Network Bottleneck

© Saman Amarasinghe 2008
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Occupancy Cost
Each message is expensive

Context switch, buffer copy, network protocol stack processing at the 

sender

NIC to OS interrupt and buffer copy, OS to application signal and context 

switch and buffer copy at the receiver 

Message setup overhead is high

Send small amount of large messages

© Saman Amarasinghe 2008
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Latency Tolerance
Communication is slow
Memory systems have 100+ to 1 latency to CPU

Cluster interconnects have 10,000+ to 1 latency to CPU

Grid interconnects have 10,000,000+ to 1 latency to CPU

Split operations into a separate initiation and 
completion step
Programmers rarely good at writing programs with split operations

33



Latency Tolerance in MPI

Example: Point-to-point “Rendezvous”

 Typical 3-way:

• Sender requests

• Receiver acks with ok to send

• Sender delivers data

 Alternative: “Receiver requests” 2-way

• Receiver sends “request to receive” to designated sender

• Sender delivers data

• MPI_ANY_SOURCE receives interfere

 MPI RMA: sender delivers data to previously agreed location

34



Network Bottlenecks
Network Storms
 Bursty behavior can clog the networks

• TCP timeouts can be very expensive 

 Trying to stuff too much data can lead to big slowdowns

• Too much data enters a overloaded switch/router/computer

• A packet gets dropped

• Waits for the packet until timeout

• TCP backoff kicks in  adds a big delay

Messages are not streams

 User buffer can be sent in any order

 Allows aggressive (but good-citizen) UDP based communication

• Aggregate acks/nacks

• Compare to “Infinite Window” TCP (receive buffer)

 80%+ of bandwidth achievable on long-haul system

• Contention management can maintain “good Internet behavior”

• Actually reduces network load by reducing the number of acks and retransmits; 
makes better use of network bandwidth (use it or lose it)

35



Data Center Scale
Some programs need to scale-up

A lot of users

A lot of data

A lot of processing

© Saman Amarasinghe 2008
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Examples of Need to Scale
Airline Reservation System

Stock Trading System

Web Page Analysis

Scene Completion

Web Search

37



Example: Web Page Analysis

Experiment

Use web crawler to gather 151M HTML pages weekly 11 times

• Generated 1.2 TB log information

 Analyze page statistics and change frequencies

Fetterly, Manasse, Najork, Wiener (Microsoft, HP), 
“A Large-Scale Study of the Evolution of Web 
Pages,” Software-Practice & Experience, 2004

From: www.cs.cmu.edu/~bryant/presentations/DISC-FCRC07.ppt 

38
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Slide courtesy of Randal Bryant. Used with permission.
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Example: Scene Completion

Image Database Grouped by 

Semantic Content

 30 different Flickr.com groups

 2.3 M images total (396 GB).

Select Candidate Images Most 

Suitable for Filling Hole

 Classify images with gist scene detector 

[Torralba]

 Color similarity

 Local context matching

Computation

 Index images offline

 50 min. scene matching, 20 min. local 

matching, 4 min. compositing

 Reduces to 5 minutes total by using 5 

machines

Extension

 Flickr.com has over 500 million images …

Hays, Efros (CMU), “Scene Completion Using 

Millions of Photographs” SIGGRAPH, 2007

From: www.cs.cmu.edu/~bryant/presentations/DISC-FCRC07.ppt 

39

Images courtesy of James Hays and Alexei Efros. Used with permission.
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Example: Web Search

2000+ processors participate in a single query

200+ terabyte database

1010 total clock cycles

0.1 second response time

5¢ average advertising revenue

From: www.cs.cmu.edu/~bryant/presentations/DISC-FCRC07.ppt 

40
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Google’s Computing Infrastructure

System

~ 3 million processors in clusters of ~2000 processors each

Commodity parts

• x86 processors, IDE disks, Ethernet communications

• Gain reliability through redundancy & software management

Partitioned workload

• Data: Web pages, indices distributed across processors

• Function: crawling, index generation, index search, document retrieval, 

Ad placement

Similar systems at Microsoft & Yahoo

Barroso, Dean, Hölzle, “Web Search for a Planet: 

The Google Cluster Architecture” IEEE Micro 2003

From: www.cs.cmu.edu/~bryant/presentations/DISC-FCRC07.ppt 

41

Slide courtesy of Randal Bryant. Used with permission.



Google’s Programming Model

MapReduce

Map computation across many objects

• E.g., 1010 Internet web pages

Aggregate results in many different ways

System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

Reducek1

Map

k1
kr

Key-Value
Pairs

42

Dean & Ghemawat: “MapReduce: Simplified Data 
Processing on Large Clusters”, OSDI 2004



Programming Model

Borrows from functional programming

Users implement interface of two functions:

map  (in_key, in_value) -> 

(out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->

out_value list

32

From: Mass Data Processing Technology on Large 
Scale Clusters Summer, 2007, Tsinghua University

43

Courtesy of Tsinghua University and Google. Used with permission.



map

Records from the data source 

(lines out of files, rows of a database, etc) are fed 

into the map function as key-value pairs: e.g., 

<filename, line>.

map() produces 

one or more intermediate values 

along with an output key from the input.

33

From: Mass Data Processing Technology on Large 
Scale Clusters Summer, 2007, Tsinghua University

44

Courtesy of Tsinghua University and Google. Used with permission.



reduce

Combine data

After the map phase is over, 

all the intermediate values for a given output key are 

combined together into a list

reduce() combines those intermediate values into 

one or more final values for that same output key 

(in practice, usually only one final value per key)

34

From: Mass Data Processing Technology on Large 
Scale Clusters Summer, 2007, Tsinghua University

45

Courtesy of Tsinghua University and Google. Used with permission.



Architecture

35

Data store 1 Data store n
map

(key 1, 
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(key 2, 
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(key 3, 
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map
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...

From: Mass Data Processing Technology on Large 
Scale Clusters Summer, 2007, Tsinghua University
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Parallelism
map() functions 

run in parallel, creating different intermediate values from 
different input data sets

reduce() functions 

also run in parallel, each working on a different output key

All values are processed independently

Bottleneck: 

reduce phase can’t start until map phase is completely 
finished.

36

From: Mass Data Processing Technology on Large 
Scale Clusters Summer, 2007, Tsinghua University

46

Courtesy of Tsinghua University and Google. Used with permission.



Example: Count word 

occurrences
map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents 

for each word w in input_value: 

EmitIntermediate(w, "1"); 

reduce(String output_key, Iterator intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += ParseInt(v);

Emit(AsString(result));

37

From: Mass Data Processing Technology on Large 
Scale Clusters Summer, 2007, Tsinghua University
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How to Scale?
Distribute

Parallelize

Distribute data

Approximate

Get to a sufficiently close answer, not the exact

A little stale data might be sufficient

Transact

 If exactness is required, use transactions 

© Saman Amarasinghe 2008
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Planet Scale
Some programs need to scale-up

A lot of users

A lot of data

A lot of processing

Examples:

Seti@Home

Napster

BitTorrent

© Saman Amarasinghe 2008
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Scaling Planet Wide
Truly Distributed

No global operations

No single bottleneck 

Distributed view  stale data

Adaptive load distribution is a must

© Saman Amarasinghe 2008
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Case Study –The Bonsai System

Case study from VMware Inc.

A Prototype for  “Deduplication” at Global Scale 

Why? For Moving Virtual Machines Across the World

© Saman Amarasinghe 2008



What is the Virtualization Revolution

Decouple the “machine” from the physical machine and make it a 

file

Virtual Machines can be..

Replicated

Moved

Played 

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse


What is the Virtualization Revolution

Decouple the “machine” from the physical machine and make it a 

file

Virtual Machines can be..

Replicated

Moved

Played 

Stored

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse


Cloud Computing
Vision: Global marketplace of computing power

Work migrates as needed

To find more computing resources

To be near data and/or users

To find a cheaper provider of resources

To amortize the risk of catastrophic failure

Issues

Mostly applications are encapsulated 

as virtual machines

They are hefty to move 

© Saman Amarasinghe 2008



Time to Move a VM  Disk file

A typical Boston desktop to Palo Alto desktop (2mbps network bandwidth) copying of a VM file
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Data Redundancy – A Key Observation

Observation 1: Large part of each VMDK is executables

Observation 2: A few applications dominate the world and are in 

every machine (eg: XP and Office on desktops)

Observation 3: Substantial redundancy even within a single disk 

(eg: DLL cache, install and repair info)

Observation 4: Many Disks have a lot of zero blocks!
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Basic De-Duplication

A lot of data redundancy

Break them into blocks

Eg: 4K byte disk blocks

Calculate a hash value per 

block

Eg: SHA-256 hash (32 bytes)

Identify similar blocks by 

comparing the hash values

Eliminate copies and keep only 

the hash as an index

Much more compact storage

Recipe table and common block store can be separated 
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Inter. vs. Intra. Deduplication

Recipe and Common Block Store in same 

“system” Traditional deduplication

Multiple Recipes for One Common Block Store

 Pro: Single copy of common data blocks 

across systems  Higher compression

Cons: Lack of universal mobility

Cons: Inability to guarantee data availability

Cons: Inability to guarantee data integrity

Who owns and manages the Common Block Store?



Bonsai: A Global Store for Common Disk Blocks

Take Advantage of the Monoculture

Store the common blocks in a global store

“Google” or “Akamai”  or “VeriSign” for disk blocks



Bonsai Flow

Same original block from all the systems will have the identical encrypted block

 Gets deduplicated 

No one can read the content of the block unless the original block was seen at one 

time

 Requires the hash key to read the text

 Requires the original block to calculate the hash key

Search by UID  No possibility of getting the wrong block due to a hash collision  

Private 
key

Encryption

Compression

Hash 2
Priv. key

UID

Hash 1

Hash key

UID

?



Bonsai Flow

UID
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Decryption Decompression
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Hash Key vs UID 

Hash Key Unique ID

 Optional hash check + full page check

• Full page check can be done later

• No errors possible in a match

 UID layout has good special locality

 Central/global authority to assign UIDs

• Guarantee block integrity and availability

 Hash check is inexpensive

 1 in 18,446,744,073,709,600,000 (264) 

chances that a different block will match 

the hash key

 Lookup is random  costly

 Can be a P2P system

Reliability

Efficiency

Integrity



Compression Ratios
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End-to-End Time to Move a VMDK

A typical Boston desktop to Palo Alto desktop (2mbps network bandwidth) copying of a VMDK
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Different Levels of Compression
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Contribution of Each Component to Compression
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Technical Challenges

Adaptive Store

Robust and Scalable Truly-Global Store

Integration with the Product Line

Improve the Compression Rate

Security and Privacy



MIT OpenCourseWare
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems
Fall 2010 
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu

