
© 2010 Charles E. Leiserson 1

6.172
Performance
Engineering of
Software Systems

LECTURE 13

Parallelism and
Performance

Charles E. Leiserson

October 26, 2010

© 2010 Charles E. Leiserson 2

Amdahl’s ―Law‖

If 50% of your application is
parallel and 50% is serial, you

Photograph of Gene Amdahl removed

can’t get more than a factor due to copyright restrictions.

of 2 speedup, no matter how
many processors it runs on.*

*In general, if a fraction α of an application
can be run in parallel and the rest must run
serially, the speedup is at most 1/(1–α).

But whose application can be decomposed into
just a serial part and a parallel part? For my
application, what speedup should I expect?

© 2010 Charles E. Leiserson 3

OUTLINE

•What Is Parallelism?
•Scheduling Theory
•Cilk++ Runtime System
•A Chess Lesson

© 2010 Charles E. Leiserson 4

OUTLINE

•What Is Parallelism?
•Scheduling Theory
•Cilk++ Runtime System
•A Chess Lesson

© 2010 Charles E. Leiserson 5

Recall: Basics of Cilk++

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child
function may execute
in parallel with the
parent caller.

Control cannot pass this
point until all spawned
children have returned.

Cilk++ keywords grant permission for parallel

execution. They do not command parallel execution.

© 2010 Charles E. Leiserson 6

int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return (x+y);

}

}

Execution Model

The computation dag
unfolds dynamically.

Example:
fib(4)

4

3 2

2 1 1 0

―Processor
oblivious‖

1 0

© 2010 Charles E. Leiserson 7

Computation Dag

initial strand final strand

continue edge

return edge
spawn edge

•A parallel instruction stream is a dag G = (V, E).

•Each vertex v ∈ V is a strand : a sequence of instructions
not containing a call, spawn, sync, or return (or thrown
exception).

•An edge e ∈ E is a spawn, call, return, or continue edge.

•Loop parallelism (cilk_for) is converted to spawns and
syncs using recursive divide-and-conquer.

strand

call edge

© 2010 Charles E. Leiserson 8

TP = execution time on P processors

Performance Measures

© 2010 Charles E. Leiserson 9

TP = execution time on P processors

Performance Measures

T1 = work
= 18

© 2010 Charles E. Leiserson 10

TP = execution time on P processors

*Also called critical-path length
or computational depth.

Performance Measures

T1 = work T∞ = span*
= 18 = 9

© 2010 Charles E. Leiserson 11

TP = execution time on P processors

T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

WORK LAW

∙TP ≥T1/P

Performance Measures

SPAN LAW

∙TP ≥ T∞

© 2010 Charles E. Leiserson 12

Series Composition

Work: T1(A∪B) =

A B

Work: T1(A∪B) = T1(A) + T1(B)

SpSpaann:: TT∞∞(A(A∪B) ∪B) = T= ∞(A) + T∞(B)

© 2010 Charles E. Leiserson 13

Parallel Composition

A

B

WWoorrkk:: TT11(A(A∪B) ∪B) = T= 1(A) + T1(B)

SpSpaann:: TT∞∞(A(A∪B) ∪B) == max{T∞(A), T∞(B)}

© 2010 Charles E. Leiserson 14

Def. T1/TP = speedup on P processors.

If T1/TP = P, we have (perfect) linear speedup.

If T1/TP > P, we have superlinear speedup,
which is not possible in this performance
model, because of the Work Law TP ≥ T1/P.

Speedup

© 2010 Charles E. Leiserson 15

Parallelism

Because the Span Law dictates
that TP ≥ T∞, the maximum
possible speedup given T1
and T∞ is
T1/T∞ = parallelism

= the average
amount of work
per step along
the span.

= 18/9
= 2 .

© 2010 Charles E. Leiserson 16

PPaararallllelelism: ism: TT11/T/T∞∞ == 2.125

Example: fib(4)

Assume for
simplicity that
each strand in
fib(4) takes unit
time to execute.

WWoorrkk:: TT11 = = 17

SpSpaann:: TT∞∞ == 8

4

5

6

1

2 7

8

3

Using many more than 2 processors can
yield only marginal performance gains.

© 2010 Charles E. Leiserson 17

Analysis of Parallelism

∙The Cilk++ tool suite provides a scalability
analyzer called Cilkview.

∙Like the Cilkscreen race detector, Cilkview

uses dynamic instrumentation.
∙Cilkview computes work and span to

derive upper bounds on parallel
performance.

∙Cilkview also estimates scheduling
overhead to compute a burdened span for
lower bounds.

© 2010 Charles E. Leiserson 18

Quicksort Analysis

Example: Parallel quicksort

template <typename T>

void qsort(T begin, T end) {

if (begin != end) {

T middle = partition(

begin,

end,

bind2nd(less<typename iterator_traits<T>::value_type>(),

*begin)

);

cilk_spawn qsort(begin, middle);

qsort(max(begin + 1, middle), end);

cilk_sync;

}

}

Analyze the sorting of 100,000,000 numbers.
⋆⋆⋆ Guess the parallelism! ⋆⋆⋆

© 2010 Charles E. Leiserson 19

Cilkview Output

Measured
speedup

© 2010 Charles E. Leiserson 20

Cilkview Output

Parallelism

11.21

© 2010 Charles E. Leiserson 21

Cilkview Output

Span
Law

© 2010 Charles E. Leiserson 22

Cilkview Output

Work Law
(linear speedup)

© 2010 Charles E. Leiserson 23

Cilkview Output

Burdened
parallelism

— estimates
scheduling
overheads

© 2010 Charles E. Leiserson 24

Theoretical Analysis

Example: Parallel quicksort

template <typename T>

void qsort(T begin, T end) {

if (begin != end) {

T middle = partition(

begin,

end,

bind2nd(less<typename iterator_traits<T>::value_type>(),

*begin)

);

cilk_spawn qsort(begin, middle);

qsort(max(begin + 1, middle), end);

cilk_sync;

}

}

Expected work = O(n lg n)
Parallelism = O(lg n)

Expected span = Ω(n)

© 2010 Charles E. Leiserson 25

Interesting Practical* Algorithms

Algorithm Work Span Parallelism

Merge sort Θ(n lg n) Θ(lg3n) Θ(n/lg2n)

Matrix multiplication Θ(n3) Θ(lgn) Θ(n3/lgn)

Strassen Θ(nlg7) Θ(lg2n) Θ(nlg7/lg2n)

LU-decomposition Θ(n3) Θ(n lg n) Θ(n2/lgn)

Tableau construction Θ(n2) Θ(nlg3) Θ(n2-lg3)

FFT Θ(n lg n) Θ(lg2n) Θ(n/lg n)

Breadth-first search Θ(E) Θ(Δ lg V) Θ(E/Δ lg V)

*Cilk++ on 1 processor competitive with the best C++.

© 2010 Charles E. Leiserson 26

OUTLINE

•What Is Parallelism?
•Scheduling Theory
•Cilk++ Runtime
System

•A Chess Lesson

© 2010 Charles E. Leiserson 27

Scheduling

∙Cilk++ allows the
programmer to express
potential parallelism in
an application.

∙The Cilk++ scheduler
maps strands onto
processors dynamically
at runtime.

∙Since the theory of
distributed schedulers
is complicated, we’ll
explore the ideas with a
centralized scheduler.

…

Memory I/O

$

P

$

P

$

P

Network

© 2010 Charles E. Leiserson 28

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A strand is ready
if all its predecessors have
executed.

© 2010 Charles E. Leiserson 29

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A strand is ready
if all its predecessors have
executed.

P = 3

Complete step
∙ ≥ P strands ready.
∙ Run any P.

© 2010 Charles E. Leiserson 30

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A strand is ready
if all its predecessors have
executed.

P = 3

Complete step
∙ ≥ P strands ready.
∙ Run any P.

Incomplete step
∙ < P strands ready.
∙ Run all of them.

© 2010 Charles E. Leiserson 31

Theorem [G68, B75, EZL89]. Any greedy
scheduler achieves

TP

Analysis of Greedy

T1/P + T∞.
Proof.
∙ # complete steps T1/P,

since each complete step
performs P work.

∙ # incomplete steps T∞,
since each incomplete step
reduces the span of the
unexecuted dag by 1. ■

P = 3

© 2010 Charles E. Leiserson 32

Optimality of Greedy

Corollary. Any greedy scheduler
achieves within a factor of 2 of optimal.

Proof. Let TP* be the execution time
produced by the optimal scheduler.
Since TP* ≥ max{T1/P, T∞} by the Work and
Span Laws, we have

TP ≤ T1/P + T∞

≤ 2⋅max{T1/P, T∞}
≤ 2TP* . ■

© 2010 Charles E. Leiserson 33

Linear Speedup

Corollary. Any greedy scheduler achieves
near-perfect linear speedup whenever
T1/T∞ ≫ P.

Proof. Since T1/T∞ ≫ P is equivalent
to T∞ ≪ T1/P, the Greedy Scheduling
Theorem gives us

TP ≤ T1/P + T∞

≈ T1/P .
Thus, the speedup is T1/TP ≈ P. ■

Definition. The quantity T1/PT∞ is called
the parallel slackness.

© 2010 Charles E. Leiserson 34

Cilk++ Performance

● Cilk++’s work-stealing scheduler achieves
■ TP = T1/P + O(T∞) expected time

(provably);

■ TP T1/P + T∞ time (empirically).

● Near-perfect linear speedup as long as
P ≪ T1/T∞ .

● Instrumentation in Cilkview allows the
programmer to measure T1 and T∞ .

© 2010 Charles E. Leiserson 35

OUTLINE

•What Is Parallelism?
•Scheduling Theory
•Cilk++ Runtime System
•A Chess Lesson

© 2010 Charles E. Leiserson 36

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

P

spawn

spawn

PP

call

spawn

call

spawn

callcall

Cilk++ Runtime System

Call!

© 2010 Charles E. Leiserson 37

P

spawn

call

call

call

spawn

P

spawn

spawn

PP

call

spawn

call

spawn

callcall

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

Spawn!

© 2010 Charles E. Leiserson 38

P

spawn

call

call

call

spawn

spawn

P

spawn

spawn

PP

call

spawn

call

call

spawn

call

spawn

call

Spawn!Spawn!

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

Call!

© 2010 Charles E. Leiserson 39

spawn

call

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

Return!

© 2010 Charles E. Leiserson 40

spawn

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

Return!

© 2010 Charles E. Leiserson 41

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

Steal!

© 2010 Charles E. Leiserson 42

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

Steal!

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2010 Charles E. Leiserson 43

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2010 Charles E. Leiserson 44

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Spawn!

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2010 Charles E. Leiserson 45

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2010 Charles E. Leiserson 46

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

spawn

Theorem [BL94]: With sufficient parallelism,
workers steal infrequently

Cilk++ Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

linear speed-up.

© 2010 Charles E. Leiserson 47

Work-Stealing Bounds

Theorem. The Cilk++ work-stealing
scheduler achieves expected running time

TP T1/P + O(T∞)
on P processors.

Pseudoproof. A processor is either working or

stealing. The total time all processors spend
working is T1. Each steal has a 1/P chance of
reducing the span by 1. Thus, the expected cost
of all steals is O(PT∞). Since there are P
processors, the expected time is

(T1 + O(PT∞))/P = T1/P + O(T∞) . ■

© 2010 Charles E. Leiserson 48

B

A

C

ED

Views of stack

A A

B

A

C

A

C

D

A

C

E

CBA D

Cilk++ supports C++’s rule for pointers: A
pointer to stack space can be passed from parent
to child, but not from child to parent.

E

Cactus Stack

Cilk++’s cactus stack supports
multiple views in parallel.

© 2010 Charles E. Leiserson 49

Space Bounds

Theorem. Let S1 be the stack space required by
a serial execution of a Cilk++ program. Then
the stack space required by a P-processor
execution is at most SP ≤ PS1.

Proof (by induction). The

work-stealing algorithm
maintains the busy-leaves
property: Every extant leaf
activation frame has a
worker executing it. ■ P

P

P
P = 3

S1

© 2010 Charles E. Leiserson 50

Linguistic Implications

Code like the following executes properly
without any risk of blowing out memory:

for (int i=1; i<1000000000; ++i) {

cilk_spawn foo(i);

}

cilk_sync;

MORAL: Better to steal parents from their
children than children from their parents!

© 2010 Charles E. Leiserson 51

OUTLINE

•What Is Parallelism?
•Scheduling Theory
•Cilk++ Runtime System
•A Chess Lesson

© 2010 Charles E. Leiserson 52

Cilk Chess Programs

● Socrates placed 3rd in the 1994 International
Computer Chess Championship running on
NCSA’s 512-node Connection Machine CM5.

● Socrates 2.0 took 2nd place in the 1995
World Computer Chess Championship running
on Sandia National Labs’ 1824-node Intel
Paragon.

● Cilkchess placed 1st in the 1996 Dutch Open
running on a 12-processor Sun Enterprise
5000. It placed 2nd in 1997 and 1998 running
on Boston University’s 64-processor SGI Origin
2000.

● Cilkchess tied for 3rd in the 1999 WCCC
running on NASA’s 256-node SGI Origin 2000.

© 2010 Charles E. Leiserson 53

Socrates Speedup

T1/TP

T1/T∞

P

T1/T∞

TP = T1/P + T∞

1

0.1

measured speedup
0.01

0.01 0.1 1

TP = T∞

TP = T1/P

Normalize by
parallelism

© 2010 Charles E. Leiserson 54

Developing Socrates

∙ For the competition, Socrates was to run
on a 512-processor Connection Machine
Model CM5 supercomputer at the
University of Illinois.

∙ The developers had easy access to a similar
32-processor CM5 at MIT.

∙ One of the developers proposed a change
to the program that produced a speedup of
over 20% on the MIT machine.

∙ After a back-of-the-envelope calculation,
the proposed ―improvement‖ was rejected!

© 2010 Charles E. Leiserson 55

T32 = 2048/32 + 1 T′32 = 1024/32 + 8

= 65 seconds = 40 seconds

Socrates Paradox

TP

Original program Proposed program

T1/P + T∞

T32 = 65 seconds T′32 = 40 seconds

T1 = 2048 seconds T′1 = 1024 seconds

T ∞ = 1 second T′∞ = 8 seconds

T512 = 2048/512 + 1 T′512= 1024/512 + 8

= 5 seconds = 10 seconds

© 2010 Charles E. Leiserson 56

Moral of the Story

Work and span beat
running times for

predicting scalability
of performance.

MIT OpenCourseWare
http://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

