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Amdahl’s ―Law‖

If 50% of your application is 
parallel and 50% is serial, you 

Photograph of Gene Amdahl removed

can’t get more than a factor due to copyright restrictions.

of 2 speedup, no matter how 
many processors it runs on.*

*In general, if a fraction α of an application 
can be run in parallel and the rest must run 
serially, the speedup is at most 1/(1–α). 

But whose application can be decomposed into 
just a serial part and a parallel part?  For my
application, what speedup should I expect?
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OUTLINE
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Recall: Basics of Cilk++

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child
function may execute 
in parallel with the 
parent caller.

Control cannot pass this 
point until all spawned 
children have returned.

Cilk++ keywords grant permission for parallel 

execution.  They do not command parallel execution.
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int fib (int n) {

if (n<2) return (n);

else {

int x,y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return (x+y);

}

}

Execution Model

The computation dag
unfolds dynamically.

Example:
fib(4)

4

3 2

2 1 1 0

―Processor 
oblivious‖

1 0
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Computation Dag

initial strand final strand

continue edge

return edge
spawn edge

•A parallel instruction stream is a dag G = (V, E ).

•Each vertex v ∈ V is a strand : a sequence of instructions 
not containing a call, spawn, sync, or return (or thrown 
exception).

•An edge e ∈ E is a spawn, call, return, or continue edge.

•Loop parallelism (cilk_for) is converted to spawns and 
syncs using recursive divide-and-conquer.

strand

call edge
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TP = execution time on P processors

Performance Measures
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TP = execution time on P processors

Performance Measures

T1 = work
= 18
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TP = execution time on P processors

*Also called critical-path length
or computational depth.

Performance Measures

T1 = work T∞ = span*
= 18 = 9
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TP = execution time on P processors

T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

WORK LAW

∙TP ≥T1/P

Performance Measures

SPAN LAW

∙TP ≥ T∞
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Series Composition

Work: T1(A∪B) =

A B

Work: T1(A∪B) = T1(A) + T1(B)

SpSpaann:: TT∞∞(A(A∪B) ∪B) = T= ∞(A) + T∞(B)
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Parallel Composition

A

B

WWoorrkk:: TT11(A(A∪B) ∪B) = T= 1(A) + T1(B)

SpSpaann:: TT∞∞(A(A∪B) ∪B) == max{T∞(A), T∞(B)}
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Def. T1/TP = speedup on P processors.

If T1/TP = P, we have (perfect) linear speedup.

If T1/TP > P, we have superlinear speedup, 
which is not possible in this performance 
model, because of the Work Law TP ≥ T1/P.

Speedup
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Parallelism

Because the Span Law dictates 
that TP ≥ T∞, the maximum 
possible speedup given T1
and T∞ is
T1/T∞ = parallelism

= the average 
amount of work 
per step along 
the span.

= 18/9
= 2 .
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PPaararallllelelism: ism:  TT11/T/T∞∞ == 2.125

Example: fib(4)

Assume for 
simplicity that 
each strand in 
fib(4) takes unit 
time to execute.

WWoorrkk:: TT11 = = 17

SpSpaann:: TT∞∞ == 8

4

5

6

1

2 7

8

3

Using many more than 2 processors can 
yield only marginal performance gains.
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Analysis of Parallelism

∙The Cilk++ tool suite provides a scalability 
analyzer called Cilkview.

∙Like the Cilkscreen race detector, Cilkview

uses dynamic instrumentation.
∙Cilkview computes work and span to 

derive upper bounds on parallel 
performance.

∙Cilkview also estimates scheduling 
overhead to compute a burdened span for 
lower bounds.
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Quicksort Analysis

Example: Parallel quicksort

template <typename T>

void qsort(T begin, T end) { 

if (begin != end) {

T middle = partition( 

begin, 

end, 

bind2nd( less<typename iterator_traits<T>::value_type>(), 

*begin )

);

cilk_spawn qsort(begin, middle); 

qsort(max(begin + 1, middle), end); 

cilk_sync;

}

}

Analyze the sorting of 100,000,000 numbers.  
⋆⋆⋆ Guess the parallelism! ⋆⋆⋆
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Cilkview Output

Measured 
speedup
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Cilkview Output

Parallelism

11.21
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Cilkview Output

Span 
Law
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Cilkview Output

Work Law
(linear speedup)



© 2010 Charles E. Leiserson 23

Cilkview Output

Burdened 
parallelism

— estimates 
scheduling 
overheads
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Theoretical Analysis

Example: Parallel quicksort

template <typename T>

void qsort(T begin, T end) { 

if (begin != end) {

T middle = partition( 

begin, 

end, 

bind2nd( less<typename iterator_traits<T>::value_type>(), 

*begin )

);

cilk_spawn qsort(begin, middle); 

qsort(max(begin + 1, middle), end); 

cilk_sync;

}

}

Expected work = O(n lg n)
Parallelism = O(lg n)

Expected span = Ω(n)
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Interesting Practical* Algorithms

Algorithm Work Span Parallelism

Merge sort Θ(n lg n) Θ(lg3n) Θ(n/lg2n)

Matrix multiplication Θ(n3) Θ(lgn) Θ(n3/lgn)

Strassen Θ(nlg7) Θ(lg2n) Θ(nlg7/lg2n)

LU-decomposition Θ(n3) Θ(n lg n) Θ(n2/lgn)

Tableau construction Θ(n2) Θ(nlg3) Θ(n2-lg3)

FFT Θ(n lg n) Θ(lg2n) Θ(n/lg n)

Breadth-first search Θ(E) Θ(Δ lg V) Θ(E/Δ lg V)

*Cilk++ on 1 processor competitive with the best C++. 
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OUTLINE

•What Is Parallelism?
•Scheduling Theory
•Cilk++ Runtime 
System

•A Chess Lesson
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Scheduling

∙Cilk++ allows the 
programmer to express 
potential parallelism in 
an application.

∙The Cilk++ scheduler
maps strands onto 
processors dynamically 
at runtime.

∙Since the theory of 
distributed schedulers 
is complicated, we’ll 
explore the ideas with a 
centralized scheduler.

…

Memory I/O

$

P

$

P

$

P

Network
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A strand is ready
if all its predecessors have 
executed.
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A strand is ready
if all its predecessors have 
executed.

P = 3

Complete step
∙ ≥ P strands ready.
∙ Run any P.
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A strand is ready
if all its predecessors have 
executed.

P = 3

Complete step
∙ ≥ P strands ready.
∙ Run any P.

Incomplete step
∙ < P strands ready.
∙ Run all of them.
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Theorem [G68, B75, EZL89]. Any greedy 
scheduler achieves

TP

Analysis of Greedy

T1/P + T∞.
Proof.
∙ # complete steps T1/P, 

since each complete step 
performs P work.

∙ # incomplete steps T∞, 
since each incomplete step 
reduces the span of the 
unexecuted dag by 1.  ■

P = 3
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Optimality of Greedy

Corollary. Any greedy scheduler 
achieves within a factor of 2 of optimal.

Proof. Let TP* be the execution time 
produced by the optimal scheduler.  
Since TP* ≥ max{T1/P, T∞} by the Work and 
Span Laws, we have

TP ≤ T1/P + T∞ 

≤ 2⋅max{T1/P, T∞}
≤ 2TP* .  ■
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Linear Speedup

Corollary.  Any greedy scheduler achieves 
near-perfect linear speedup whenever 
T1/T∞ ≫ P.

Proof. Since T1/T∞ ≫ P is equivalent 
to T∞ ≪ T1/P, the Greedy Scheduling 
Theorem gives us

TP ≤ T1/P + T∞

≈ T1/P .
Thus, the speedup is T1/TP ≈ P.  ■

Definition. The quantity T1/PT∞ is called 
the parallel slackness.
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Cilk++ Performance

● Cilk++’s work-stealing scheduler achieves
■ TP = T1/P + O(T∞) expected time 

(provably);

■ TP T1/P + T∞ time (empirically).

● Near-perfect linear speedup as long as 
P ≪ T1/T∞ .

● Instrumentation in Cilkview allows the 
programmer to measure T1 and T∞ .
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OUTLINE

•What Is Parallelism?
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Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

P

spawn

spawn

PP

call

spawn

call

spawn

callcall

Cilk++ Runtime System

Call!
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P

spawn

call

call

call

spawn

P

spawn

spawn

PP

call

spawn

call

spawn

callcall

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

Spawn!
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P

spawn

call

call

call

spawn

spawn

P

spawn

spawn

PP

call

spawn

call

call

spawn

call

spawn

call

Spawn!Spawn!

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

Call!
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spawn

call

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

Return!
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spawn

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

Return!
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P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

Steal!
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P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

Steal!

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Spawn!

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

spawn

Theorem [BL94]:  With sufficient parallelism, 
workers steal infrequently 

Cilk++ Runtime System

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98].

linear speed-up.
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Work-Stealing Bounds

Theorem. The Cilk++ work-stealing 
scheduler achieves expected running time

TP T1/P + O(T∞)
on P processors.

Pseudoproof. A processor is either working or 

stealing.  The total time all processors spend 
working is T1.  Each steal has a 1/P chance of 
reducing the span by 1.  Thus, the expected cost 
of all steals is O(PT∞).  Since there are P 
processors, the expected time is 

(T1 + O(PT∞))/P = T1/P + O(T∞) . ■
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B

A

C

ED

Views of stack

A A

B

A

C

A

C

D

A

C

E

CBA D

Cilk++ supports C++’s rule for pointers: A 
pointer to stack space can be passed from parent 
to child, but not from child to parent.

E

Cactus Stack

Cilk++’s cactus stack supports 
multiple views in parallel.
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Space Bounds

Theorem. Let S1 be the stack space required by 
a serial execution of a Cilk++ program.  Then 
the stack space required by a P-processor 
execution is at most SP ≤ PS1.

Proof (by induction). The 

work-stealing algorithm 
maintains the busy-leaves 
property: Every extant leaf 
activation frame has a 
worker executing it. ■ P

P

P
P = 3

S1
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Linguistic Implications

Code like the following executes properly 
without any risk of blowing out memory:

for (int i=1; i<1000000000; ++i) {

cilk_spawn foo(i);

}

cilk_sync;

MORAL: Better to steal parents from their 
children than children from their parents!
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OUTLINE
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Cilk Chess Programs

● Socrates placed 3rd in the 1994 International 
Computer Chess Championship running on 
NCSA’s 512-node Connection Machine CM5.

● Socrates 2.0 took 2nd place in the 1995 
World Computer Chess Championship running 
on Sandia National Labs’ 1824-node Intel 
Paragon.  

● Cilkchess placed 1st in the 1996 Dutch Open 
running on a 12-processor Sun Enterprise 
5000.  It placed 2nd in 1997 and 1998 running 
on Boston University’s 64-processor SGI Origin 
2000.

● Cilkchess tied for 3rd in the 1999 WCCC 
running on NASA’s 256-node SGI Origin 2000.



© 2010 Charles E. Leiserson 53

Socrates Speedup

T1/TP

T1/T∞

P

T1/T∞

TP = T1/P + T∞

1

0.1

measured speedup
0.01

0.01 0.1 1

TP = T∞

TP = T1/P

Normalize by 
parallelism
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Developing Socrates 

∙ For the competition, Socrates was to run 
on a 512-processor Connection Machine 
Model CM5 supercomputer at the 
University of Illinois.

∙ The developers had easy access to a similar 
32-processor CM5 at MIT.

∙ One of the developers proposed a change 
to the program that produced a speedup of 
over 20% on the MIT machine.

∙ After a back-of-the-envelope calculation, 
the proposed ―improvement‖ was rejected!
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T32 = 2048/32 + 1 T′32 = 1024/32 + 8

= 65 seconds = 40 seconds

Socrates Paradox

TP

Original program Proposed program

T1/P + T∞

T32 = 65 seconds T′32 = 40 seconds

T1 = 2048 seconds T′1 = 1024 seconds

T ∞ = 1 second T′∞ = 8 seconds

T512 = 2048/512 + 1 T′512= 1024/512 + 8

= 5 seconds = 10 seconds
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Moral of the Story

Work and span beat 
running times for 

predicting scalability 
of performance.
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