
15.093 Optimization Methods
Lecture 17: Applications of Nonlinear Optimization




1 Lecture Outline
 Slide 1
� History of Nonlinear Optimization
� Where do NLPs Arise�
� Portfolio Optimization
� Tra�c Assignment
� The general problem
� The role of convexity
� Convex optimization
� Examples of convex optimization problems
2 History of Optimization
 Slide 2
Fermat, 1638; Newton, 1670
min f(x) x: scalar
df(x)
 � 0
dx
Euler, 1755
 min f(x1; : : : ; xn)
rf(x) � 0
 Slide 3
Lagrange, 1797
 min f(x1; : : : ; xn)
s.t. gk(x1; : : : ; xn) � 0 k � 1; : : : ;m
Euler, Lagrange Problems in in�nite dimensions, calculus of variations.
Kuhn and Tucker, 1950s Optimality conditions.
1950s Applications.
1960s Large Scale Optimization.
Karmakar, 1984 Interior point algorithms.
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3 Where do NLPs Arise�
3.1 Wide Applicability
 Slide 4
� Transportation
Tra�c management, Tra�c equilibrium . . .
Revenue management and Pricing
� Finance - Portfolio Management
� Equilibrium Problems
 Slide 5
� Engineering
Data Networks and Routing
Pattern Classi�cation
� Manufacturing
Resource Allocation
Production Planning
4 A Simple Portfolio
Selection Problem
4.1 Data
 Slide 6
� xi: decision variable on amount to invest in stock i � 1; 2
� ri: reward from stock i � 1; 2 (random variable)
Data:
� �i � E(ri): expected reward from stock i � 1; 2
� V ar(ri): variance in reward from stock i � 1; 2
� �ij � E[(rj � �j)(ri � �i)] � Cov(ri; rj)
� Budget B, target � on expected portfolio reward
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5 A Simple Portfolio
Selection Problem
5.1 The Problem
 Slide 7
Objective: Minimize total portfolio variance so that:
� Expected reward of total portfolio is above target �
� Total amount invested stay within our budget
� No short sales
 Slide 8
2 2
min f(x) � x1V ar(r1) + x2V ar(r2) + 2x1x2�12
subject to
 X
xi � B
i
X X
E[ rixi] � �ixi � �; (exp reward of portf:)
i i
 xi � 0; i � 1; 2
(Linearly constrained NLP)
6 A Real Portfolio
Optimization Problem
6.1 Data
 Slide 9
� We currently own zi shares from stock i, i 2 S
� Pi: current price of stock i
� We consider buying and selling stocks in S, and consider buying new stocks
from a set B (B \ S � ;)
� Set of stocks B [ S � f1; : : : ; ng
 Slide 10
� Data: Forecasted prices next period (say next month) and their correla
tions:
 E[P̂i] � �i
Cov(P̂i; P̂j) � E[(P̂i � �i)(P̂j � �j)] � �ij
0
� � (�1; : : : ; �n) ; � � �ij
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6.2 Issues and Objectives Slide 11 � Mutual funds regulations: we cannot sell a stock if we do not own it � Transaction costs � Turnover � Liquidity � Volatility � Objective: Maximize expected wealth next period minus transaction costs 6.3 Decision variables � Slide 12 # shares bought or sold if i 2 S xi � # shares bought if i 2 B By convention: xi � 0 buy xi � 0 sell 6.4 Transaction costs Slide 13 � Small investors only pay commision cost: ai $/share traded � Transaction cost: aijxij � Large investors (like portfolio managers of large funds) may a�ect price: price becomes Pi + bixi 2� Price impact cost: (Pi + bixi)xi � Pixi � bixi � Total cost model: 2 ci(xi) � aijxij + bixi 6.5 Liquidity Slide 14 � Suppose you own 50% of all outstanding stock of a company � How di�cult is to sell it� � Reasonable to bound the percentage of ownership on a particular stock zi + xi � Thus, for liquidity reasons � �itotalzi total� z �# outstanding shares of stock ii� �i maximum allowable percentage of ownership 4 



i�1 i�1 � No short sales: zi + xi � 0; i 2 B [ S 6.8 Expected value and Volatility � Expected value of portfolio: Slide 17 

6.6 Turnover � Because of transaction costs: jxij should be small Slide 15 jxij � �i ) ��i � xi � �i � Alternatively, we might want to bound turnover: nX i�1 

Pijxij � t 6.7 Balanced portfolios � Need the value of stocks we buy and sell to balance out: Slide 16 nX
� L ) �L � Pixi � L
#
"
 nX nX E P̂i(zi + xi) � �i(zi + xi) i�1 i�1 � Variance of the value of the portfolio:
#
"
 nX
6.9 Overall formulation V ar i�1 

P̂i(zi + xi) � (z + x)0�(z + x) Slide 18
nX
nX
 2 max �i(zi + xi)� (aijxij+ bixi )
i�1 i�1 0 2
s:t: (z + x) �(z + x) � �total
zi + xi � �izi ��i � xi � �i nX
�L � Pixi � L
i�1
nX
Pijxij � t
i�1 zi + xi � 0
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7 The general problem Slide 19 n f(x): � 7! � n gi(x): � 7! �; i � 1; : : : ;m NLP : min f(x) s.t. g1(x) � 0
.
.
.
gm(x) � 0 7.1 Is Portfolio Optimization an NLP� Slide 20 nXmax � (z + x )� )i i i itotal


nX 2(a jx j+ b xi i ii�1 i�10 2+(z �(z � �x)s:t: + x)+ xz � � zii i i
��i � xi � �i nX
�L � Pixi � L
i�1
nX z + x � 0i iPijxij � t i�1 8 Geometry Problems 8.1 Fermat-Weber Problem Slide 21 nGiven m points c1; : : : ; cm 2 � (locations of retail outlets) and weights w1; : : : ;wm 2 �. Choose the location of a distribution center. nThat is, the point x 2 � to minimize the sum of the weighted distances from nx to each of the points c1; : : : ; cm 2 � (minimize total daily distance traveled). mP min wijjx � cijj i�1 s:t: x 2 �n or 6




Pmmin wijjx � cijj i�1 s:t: x � 0 Ax � b; feasible sites (Linearly constrained NLP) 8.2 The Ball Circumscription Problem Slide 22 n nGiven m points c1; : : : ; cm 2 � , locate a distribution center at point x 2 � to nminimize the maximum distance from x to any of the points c1; : : : ; cm 2 � . min � s:t: jjx� cijj � �; i � 1; : : : ;m 9 Transp ortation 9.1 Tra�c Assignment Slide 23 � OD w, paths p 2 Pw, demand dw, xp: �ow of p P cij( p: crossing (i;j) xp): travel cost of link (i; j). cp(x) is the travel cost of path p and X cp(x) � cij(xij); 8p 2 Pw; 8w 2 W: (i;j) on p System� optimization principle : Assign �ow on each path to satisfy total demand and so that the total network cost is minimized. X
Min C(x) � cp(x)xp p
X s:t: xp � 0; xp � dw; 8w p2Pw 9.2 Example Slide 24 Consider a three path network, dw � 10. With travel costs cp1 (x) � 2xp1 + xp2 + 15, cp2 (x) � 3xp2 + xp1 + 11 cp3 (x) � xp3 + 48 C(x) � cp1(x)xp1 + cp2(x)xp2 + cp3(x)xp3 � 2 2 2 2xp1 + 3xp2 + xp3 + 2xp1xp2 + 15xp1 + 11xp2 + 38xp3 � � �
x � 6; x � 4; x � 0
p1 p2 p3
 Slide 25 7 



� User� optimization principle : Each user of the network chooses, among all paths, a path requiring minimum travel cost, i.e., for all w 2W and p 2 Pw, � � � 0 xp � 0 : �! cp(x ) � cp0 (x ) 8p 2 Pw; 8w 2W where cp(x) is the travel time of path p and X cp(x) � cij(xij); 8p 2 Pw; 8w 2 W (i;j) on p 10 Optimal Routing Slide 26 � Given a data net and a set W of OD pairs w � (i; j) each OD pair w has input tra�c dw � Optimal routing problem: X X
Min C(x) � Ci;j( xp) i;j p: (i;j)2p
X s:t: xp � dw; 8w 2W p2Pw xp � 0; 8p 2 Pw; w 2W 11 The general problem again Slide 27 n f(x): � 7! � is a continuous (usually di�erentiable) function of n variables n gi(x): � 7! �; i � 1; : : : ;m; n hj(x): � 7! �; j � 1; : : : ; l NLP : min f(x) s.t. g1(x) � 0
.
.
.
gm(x) � 0 h1(x) � 0 .
.
.
hl(x) � 0 8




11.1 De�nitions Slide 28 � The feasible region of NLOP is the set: F � fxjg1(x) � 0; : : : ; gm(x) � 0g h1(x) � 0; : : : ; hl(x) � 0g 11.2 Where do optimal solutions lie� Slide 29 Example: 2 2 min f(x; y) � (x� a) + (y � b) Subject to 2 2 (x � 8) + (y � 9) � 49 2 � x � 13 x+ y � 24 Optimal solution(s) do not necessarily lie at an extreme point! Depends on (a; b). (a; b) � (16; 14) then solution lies at a corner (a; b) � (11; 10) then solution lies in interior (a; b) � (14; 14) then solution lies on the boundary (not necessarily corner) 11.3 Local vs Global Minima Slide 30 � The ball centered at x� with radius � is the set: B(x� ; �) :� fxjjjx� x�jj � �g � x 2 F is a local minimum of NLOP if there exists � � 0 such that f(x) � f(y) for all y 2 B(x; �) \F � x 2 F is a global minimum of NLOP if f(x) � f(y) for all y 2 F 12 Convex Sets Slide 31 n� A subset S � � is a convex set if x; y 2 S ) �x + (1 � �)y 2 S 8� 2 [0; 1] � If S; T are convex sets, then S \ T is a convex set � Implication: The intersection of any collection of convex sets is a convex set 9 



13 Convex Functions Slide 32 � A function f(x) is a convex function if f(�x + (1 � �)y) � �f(x) + (1 � �)f(y) 8x; y 8� 2 [0; 1]
� A function f(x) is a concave function if f(�x + (1 � �)y) � �f(x) + (1 � �)f(y) 8x; y 8� 2 [0; 1]
13.1 Examples in one dimension Slide 33 � f(x) � ax+ b 2� f(x) � x + bx+ c � f(x) � jxj � f(x) � � ln(x) for x � 0 1� f(x) � for x � 0xx� f(x) � e13.2 Properties Slide 34 � If f1(x) and f2(x) are convex functions, and a; b � 0, then f(x) :� af1(x) + bf2(x) is a convex function � If f(x) is a convex function and x � Ay + b, then g(y) :� f(Ay + b) is a convex function 13.3 Recognition of a Convex Function Slide 35 A function f(x) is twice di�erentiable at x� if there exists a vector rf(x�) (called the gradient of f(�)) and a symmetric matrix H(x�) (called the Hessian of f(�)) for which: 0 f(x) � f(x�) + rf(x�) (x � x�) 1 0 2 + (x � x�) H(x�)(x � x�) + R(x)jjx � x�jj
2 where R(x) ! 0 as x ! x� Slide 36 The gradient vector is the vector of partial derivatives: � �0
@f(x�) @f(x�)
rf(x�) � ; : : : ; @x1 

@xn
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The Hessian matrix is the matrix of second partial derivatives: 2@ f(x�)
H(x�)ij � @xi@xj
13.4 Examples Slide 37 0� For LP, f(x) � c x, rf(�x) � c � For NLP, 2 2f(x) � 8x1 � x1x2 + x2 + 8x1, at �x � (1; 0), f(�x) � 16 and 0rf(�x) � (16�x1 � x�2 + 8;�x�1 + 2�x2) � (24;�1).� � 16 � 1 H(�x) � Slide 38
�1 2 Property: f(x) is a convex function if and only if H(x) is positive semi-de�nite (PSD) for all x 0Recall that A is PSD if u Au � 0; 8u Property: If H(x) is PD for all x, then f(x) is a strictly convex function 13.5 Examples in n Dimensions Slide 39 0� f(x) � a x + b 1 0 0� f(x) � x Mx � c x where M is PSD2� f(x) � jjxjj for any norm jj � jj Pm 0
� f(x) � � ln(bi�a x) for x satisfying Ax < b i
i�1 14 Convex Optimization 14.1 Convexity and Minima Slide 40 min f(x) s.t. x 2 F Theorem: Suppose that F is a convex set, f : F ! � is a convex function, and � �x is a local minimum of P . Then x is a global minimum of f over F . 14.1.1 Proof Slide 41 �Assume that x is not the global minimum. Let y be the global minimum. From the convexity of f(�), � �f(y(�)) � f(�x + (1 � �)y) � �f(x ) + (1 � �)f(y) � � �� �f(x ) + (1 � �)f(x ) � f(x ) 11 



for all � 2 (0; 1). Therefore, f(y(�)) � f(x�) for all � 2 (0; 1), and so x� is not a local minimum, resulting in a contradiction 14.2 COP Slide 42 COP : min f(x) s:t: g1(x) � 0 . . . gm(x) � 0 Ax � b COP is called a convex optimization problem if f(x); g1(x); : : : ; gm(x) are convex functions Slide 43 Note that this implies that the feasible region F is a convex set In COP we are minimizing a convex function over a convex set Implication: If COP is a convex optimization problem, then any local minimum will be a global minimum. 15 Examples of COPs The Fermat-Weber Problem - COP Slide 44 min s:t: mP i�1 

wijjx � cijj x 2 P The Ball Circumscription Problem - COP min s:t: � jjx � cijj � �; i � 1; : : : ;m 
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15.1 Is Portfolio Optimization a COP� Slide 45 n n
 2 max �i(zi + xi)� (aijxij+ bixi )
0 2
total
zi + xi � �izi 

XX i�1i�1s:t: (z x) + x) � �+ �(z�� � x � �i i i
n
�L � Pixi � L
Xi�1
nX i�1 

Pijxij � t zi + xi � 0 15.2 Quadratically Constrained Problems min (A0x + b0)0(A0x + b0) � c0 0x � d0 s:t: (Aix + bi)0(Aix + bi) � c0 ix � di � 0 Slide 46 i � 1; : : : ;m This is a COP 16 Classi�cation of NLPs � Linear: f(x) � ctx, gi(x) � At ix � bi, i � 1; :::; m � Unconstrained: f(x), �n 

Slide 47 � Quadratic: f(x) � ctx + xtQx, gi(x) � At ix � bi � Linearly Constrained: gi(x) � At ix � bi � Quadratically Constrained: gi(x) � (Aix + bi)0(Aix + bi) � c0 ix � di � 0; i � 1; : : : ;m P
P
� Separable: f(x) � j fj(xj), gi(x) � j gij(xj) 17 Two Main Issues Slide 48 � Characterization of minima Necessary | Su�cient Conditions Lagrange Multiplier and KKT Theory 13 



� Computation of minima via iterative algorithms Iterative descent Methods Interior Point Methods 18 Summary � Convex optimization is a powerful modeling framework
� Main message: convex optimization can be solved e�ciently
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