15.093 Optimization Methods

Lecture 17: Applications of Nonlinear Optimization



1 Lecture Outline
e History of Nonlinear Optimization
e Where do NLPs Arise?
e Portfolio Optimization
e Traffic Assignment
e The general problem
e The role of convexity
e Convex optimization

e Examples of convex optimization problems

2 History of Optimization

Fermat, 1638; Newton, 1670

min f(x) x: scalar
&iz)
dx
Euler, 1755
min f(x1,..., %)
Vi(®)=0
Lagrange, 1797
min  f(z1,...,2,)

st. gp(er,...,2,) =0 k=1,....m

Euler, Lagrange Problems in infinite dimensions, calculus of variations.

Kuhn and Tucker, 1950s Optimality conditions.
1950s Applications.
1960s Large Scale Optimization.

Karmakar, 1984 Interior point algorithms.
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3 Where do NLPs Arise?

3.1 Wide Applicability

e Transportation

SLIDE 4

Traffic management, Traffic equilibrium . ..

Revenue management and Pricing
e Finance - Portfolio Management

e Equilibrium Problems
SLIDE 5

e Engineering

Data Networks and Routing

Pattern Classification
e Manufacturing

Resource Allocation

Production Planning

4 A Simple Portfolio
Selection Problem

4.1 Data SLIDE 6

e x;: decision variable on amount to invest in stock ¢ = 1,2

o 7;: reward from stock ¢ = 1,2 (random variable)
Data:

o ;i = E(r;): expected reward from stock i = 1,2
e Var(r;): variance in reward from stock ¢ = 1,2

o 0y = E[(rj — pj)(ri — pi)] = Cov(ri, )

e Budget B, target $ on expected portfolio reward



5 A Simple Portfolio
Selection Problem

5.1 The Problem

Objective: Minimize total portfolio variance so that:
e Expected reward of total portfolio is above target g
e Total amount invested stay within our budget

e No short sales
min f(x) = x%Var(rl) + x%Var(rz) + 2z 120010

E[Z rix; = Zﬂil’i > 3, (exp reward of portf.)

B i

subject to

(Linearly constrained NLP)

6 A Real Portfolio
Optimization Problem

6.1 Data

e We currently own z; shares from stock ¢, 2 € S

e P;: current price of stock 7

We consider buying and selling stocks in S, and consider buying new stocks
from a set B (BN.S =10)

e Set of stocks BUS ={1,...,n}

Data: Forecasted prices next period (say next month) and their correla-
tions:

EIP] = pi
Cov(P;, Py) = E[(P; — i) (Pj — ;)] = o
)

= (p1, - tn)', Y = o0ij
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6.2

6.3

Issues and Objectives
Mutual funds regulations: we cannot sell a stock if we do not own it
Transaction costs
Turnover
Liquidity
Volatility
Objective: Maximize expected wealth next period minus transaction

costs

Decision variables

~_ | # shares bought or sold ifi€ S
Y17\ # shares bought ifieB

By convention:

6.4

6.5

Transaction costs
Small investors only pay commision cost: a; $/share traded
Transaction cost: a;|a;]|

Large investors (like portfolio managers of large funds) may affect price:
price becomes P; + b;x;

Price impact cost: (P; + bjx;)z; — Piz; = b;jx?
Total cost model:
cixi) = aj|ei| + bz}
Liquidity
Suppose you own 50% of all outstanding stock of a company
How difficult is to sell it?

Reasonable to bound the percentage of ownership on a particular stock

Zi
Stotal = Vi
7

Thus, for liquidity reasons

total

: =7 outstanding shares of stock ¢

z

~; maximum allowable percentage of ownership
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6.6 Turnover

e Because of transaction costs: |a;| should be small

e Alternatively, we might want to bound turnover:
n
i=1

6.7 Balanced portfolios

e Need the value of stocks we buy and sell to balance out:

Zn: Pl'l‘l'

i=1

<L = -L<> Pua<L
i=1

e No short sales:
ZZ—l—l‘ZZO, 1€ BUS

6.8 Expected value
and Volatility

e Expected value of portfolio:

E ZPZ(ZZ-I-JL‘Z) = ZNZ(ZZ-I-JL‘Z)
i=1 i=1
e Variance of the value of the portfolio:
Var ZPZ(ZZ +z)| = (z+2)2(z + @)
i=1

6.9 Overall formulation

max Zu,(z, +zi) — Z(a,|x,| + b,xf)
=1 =1
st. (z4x)2(z+z) <o?
zi +w; < yizlo

=0 <w; <4

—LSZW:P,‘CE,‘ <L

=1

Zn:Pl|x,| <t
=1

zi +x; >0
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7 The general problem

SLIDE 19
fl®): R =R
gi(e): M —=RNi=1,....m
NLP: min f(=)
st gi(e) < 0
gm(x) < 0
7.1 Is Portfolio Optimization an NLP?
. . SLIDE 20
max Zu,(z, +zi) — Z(a,|x,| + b,xf)
=1 =1
st. (z4x)2(z+z) <o?
zi+ o <yl
=0 <w; <4
-L< Z Pai <L
=1
ZP,|$,| <t
=1
zi +x; >0
8 Geometry Problems
8.1 Fermat-Weber Problem
SLIDE 21
Given m points ¢y, ..., ¢y € R (locations of retail outlets) and weights wy, ..., w,, €

R. Choose the location of a distribution center.

That is, the point & € 2" to minimize the sum of the weighted distances from
x to each of the points ¢1,...,¢, € N (minimize total daily distance
traveled).

. m
min > w;lle — ¢l
i=1
st. zeR”

or



. m
min > w;||® — ¢l
i=1
st. x>0

Ax < b, feasible sites

(Linearly constrained NLP)

8.2 The Ball Circumscription Problem

SLIDE 22
Given m points ey, . . ., ¢, € N7, locate a distribution center at point & € R" to
minimize the maximum distance from « to any of the points e1, ..., ¢, € R™.
min 9§
st ||le— ¢l <9, i=1,....,m
9 Transportation
9.1 Traffic Assignment
SLIDE 23
e OD w, paths p € P, demand d,,, x,: flow of p
Cij(zp; crossing (i,) zp): travel cost of link (7, j).
¢p(z) is the travel cost of path p and
ep(z) = Z cij(x5;), Yp € Py, YweW.
(i,§) on p
System — optimization principle : Assign flow on each path to satisfy
total demand and so that the total network cost is minimized.
Min C(z) = Zcp(x)xp
P
st oz, >0, Z Tp =dy, Yw
PEPY
9.2 Example
SLIDE 24
Consider a three path network, d,, = 10.
With travel costs ¢p, (2) = 22p, + 2p, + 15, ¢p, (2) = 32p, + 2p, + 11 ¢p, (2) =
Tp, + 48
Clz) = cp1(x)zp1 + epa(T)ap2 + cp3(T)ps =
2001 + 3wy 4 w0 + 2wp12p0 + 152p1 4+ 11aps + 38,3
2y =6, Tpo=4, x,3=0
SLIDE 25



e User — optimization principle : Each user of the network chooses, among
all paths, a path requiring minimum travel cost,
le., forallwe W and p € Py,

r, >0 — cp(a”) <cp(a) Vo' € Py, YweW
where ¢, () is the travel time of path p and

eplz) = Z cij(x5;), Vp € Py, YweW

(4,) on p

10 Optimal Routing

SLIDE 26
e Given a data net and a set W of OD pairs w = (¢,j) each OD pair w has

input traffic dy,
e Optimal routing problem:

Min C(x) = Ci;l Z )

i,j p (4,5)€p

s.t. Z Tp=dy, YweW
PEPy

l’pZOa VpEPwa wEW

11 The general problem again

fa): B - SLIDE 27
z): 1" —

is a continuous (usually differentiable) function of n variables
gile): W= RNi=1,...,m,

hj(e): N —RN,j=1,....,1

NLP min  f(®)
st gi(e) < 0
gm(w) < 0
hi(x) = 0
hl(az) = 0




11.1 Definitions
e The feasible region of NLOP is the set:
F = {elgu(w) <0,..., gu(x) < 0}
hi(®)=0,..., h(x) =0}

SLIDE 28

11.2 Where do optimal solutions lie?
SLIDE 29
Example:

min f(z,y) = (x — a)® + (y — b)*
Subject to
(6= 8)" + (y— 9)* < 49
2< <13
r+y<24

Optimal solution(s) do not necessarily lie at an extreme point!
Depends on (a, b).

(a,b) = (16, 14) then solution lies at a corner
(a,b) = (11,10) then solution lies in interior
(a,b) = (14, 14) then solution lies on the boundary
(not necessarily corner)

11.3 Local vs Global Minima
SLIDE 30
e The ball centered at & with radius ¢ is the set:
Bz, ) = {allle - 2]l < ¢}
o x ¢ F is a local minimum of NLOP if there exists ¢ > 0 such that
f(®) < f(y) forally € B(e,e)NF

o x € F is a global minimum of NLOP if f(x) < f(y) for ally € F

12 Convex Sets
SLIDE 31

o A subset S C R" is a convex set if

r,yeS=> x+(1-ANyes YA e [0,1]

e If S, T are convex sets, then S N7 is a convex set

e Implication: The intersection of any collection of convex sets is a convex
set



13 Convex Functions
SLIDE 32

e A function f(z) is a conver function if
FOz + (1= Ny) <Af(z) + (1= N f(y)
Va,y  VYA€[0,1]
e A function f(a) is a concave function if
FOz + (1= XNy) > Af(x) + (1= N f(y)
Va,y  VYA€[0,1]

13.1 Examples in one dimension

o f(r)=ax+b

SLIDE 33

13.2 Properties
SLIDE 34

o If fi(®) and fao(w) are convex functions, and a,b > 0, then f(x) :
afi(®) + bfa(w) is a convex function

o If f(x) is a convex function and @ = Ay + b, then ¢g(y) := f(Ay + b) is
a convex function

13.3 Recognition of a Convex Function
SLIDE 35

A function f(@) is twice differentiable at @ if there exists a vector V f(#) (called
the gradient of f(-)) and a symmetric matrix H (&) (called the Hessian of f(-))
for which:

5
|
=1
2
=1
5
|
=1
+
=
B
B
|
=1
o

where R(#) > 0 as ® — & SLIDE 36
The gradient vector is the vector of partial derivatives:

Vi = (42 ey

10




The Hessian matrix is the matrix of second partial derivatives:

0 f(=)
H(w)” o 3%31‘]
13.4 Examples
e For LP, f(z)=c=, Vf(z)="c
e For NLP,
f(z) =827 —xyw9 + 22 + 8y, at z = (1,0),
f(z) =16 and

V(E) = (162, — T + 8, — &) + 272) = (24, —1).
H(7) = [ i61 _21]

Property: f(a) is a convex function if and only if [T () is positive semi-definite

(PSD) for all
Recall that A is PSD if w’ Au >0, Vu

Property: If H(x) is PD for all @, then f(a) is a strictly convex function

13.5 Examples in n Dimensions

o flw)=a'x+)

o f(z) = ta' Mz — ¢'x where M is PSD

e f(@) = [[a]| for any norm || - |

o f(x) =3 —In(b; —alx) for x satisfying Az < b

i=1
14 Convex Optimization

14.1 Convexity and Minima

min  f(®)
st. xeF

Theorem: Suppose that F is a convex set, f : F — R is a convex function, and

*

x* 1s a local minimum of P. Then x* is a global minimum of f over F.

14.1.1 Proof

Assume that «* is not the global minimum. Let y be the global minimum.

From the convexity of f(),
FyA) =7fAe” + (1= Ny) <Af(=") + (1 - A)f(y)

<Af(x) 4+ (1= A fa¥)

11
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for all A € (0,1).

Therefore, f(y(A)) < f(ax*) for all A € (0, 1), and so @* is not a local minimum,
resulting in a contradiction

14.2 COP SLIDE 42
COP: min f(=)
st. g1(®) <0
gm(@) <0
Ax =b
. ) SLIDE 43
COP is called a conver optimization problem if f(x), g1(®), ..., gm(®) are con-
vex functions
Note that this implies that the feasible region F is a convex set
In COP we are minimizing a convex function over a convex set
Implication: If COP is a convex optimization problem, then any local minimum
will be a global minimum.
15 Examples of COPs
SLIDE 44

The Fermat-Weber Problem - COP

min > w;lle — ¢l
i=1
st. z€P
The Ball Circumscription Problem - COP

min ¢
st ||le— ¢l <9, i=1,....,m

12



15.1 Is Portfolio Optimization a COP?

R . SLIDE 45
max Zu,(z, +zi) — Z(a,|x,| + b,xf)
=1 =1
st. (z4x)2(z+z) <o?
zi +w; < yizlo
=0 <w; <4
-L< Z Pai <L
=1
ZP,|$,| <t
=1
zi +x; >0
15.2 Quadratically Constrained Problems
SLIDE 46
min  (Aox 4 bo)'(Aox + bo) — ¢z — dy
st (A +b;) (A +b;) —cle—d; <0
1=1,...,m
This 1s a COP
16 Classification of NLPs
SLIDE 47
e Linear: f(z) = c'z, gi(x) = Alz —b;,i=1,....m
e Unconstrained: f(z), "
e Quadratic: f(z) = 'z + 2'Qu, gi(z) = Alw — b;
¢ Linearly Constrained: g;(z) = Alz — b;
¢ Quadratically Constrained: g;(x) = (A;x + b;)' (Asx + b;) — clx —
d; <0,
1=1,...,m
e Separable: f(x) =3, fi(x;), 9i(z) = 3 ; 9ij(w;)
17 Two Main Issues
SLIDE 48

e Characterization of minima

Necessary — Sufficient Conditions

Lagrange Multiplier and KKT Theory

13



e Computation of minima via iterative algorithms

Tterative descent Methods
Interior Point Methods

18 Summary

e Convex optimization is a powerful modeling framework

e Main message: convex optimization can be solved efficiently

14
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