15.093 Optimization Methods

Lecture 16: Dynamic Programming

1 Outline

1. The knapsack problem

2. The traveling salesman problem
3. The general DP framework

4. Bellman equation

5. Optimal inventory control

6. Optimal trading

7. Multiplying matrices

2 The Knapsack problem

n
maximize cha:j
j=1
n
subject to ijxj <K
j=1
z; € {0,1}
Define '
2
C;(w) = maximize Z ¢z
j=1
i
subject to ijxj <w
j=1

z; €1{0,1}

2.1 A DP Algorithm

e C;(w): the maximum value that can be accumulated using some of the
first ¢ items subject to the constraint that the total accumulated weight
1s equal to w

e Recursion
Cip1(w) = max{C’i(w), Ci(w —wiq1) + Ci-l—l}

e By considering all states of the form (¢, w) with w < K, algorithm has
complexity O(nK)

SLIDE 1

SLIDE 2

SLIDE 3

3

3.1

The TSP

G = (V, A) directed graph with n nodes
¢i; cost of arc (3, j)
Approach: choice of a tour as a sequence of choices

We start at node 1; then, at each stage, we choose which node to visit
next.

After a number of stages, we have visited a subset S of V' and we are at
a current node k € S

A DP algorithm

C(S, k) be the minimum cost over all paths that start at node 1, visit all
nodes in the set S exactly once, and end up at node &

(S, k) a state; this state can be reached from any state of the form (S\
{k},m), with m € S'\ {k}, at a transition cost of ¢,

Recursion

cish=, it (VB vom). ke

C({1},1) =0.
Length of an optimal tour is

H}cin (C’({l, .,nl k) + ckl)

Complexity: O(n22”) operations

Guidelines for constructing
DP Algorithms

View the choice of a feasible solution as a sequence of decisions occurring
in stages, and so that the total cost is the sum of the costs of individual
decisions.

Define the state as a summary of all relevant past decisions.

Determine which state transitions are possible. Let the cost of each state
transition be the cost of the corresponding decision.

Write a recursion on the optimal cost from the origin state to a destination
state.

The most crucial step is usually the definition of a suitable state.

SLIDE 4

SLIDE 5

SLIDE 6

5 The general DP framework

5.1

6

Discrete time dynamic system described by state xj, k indexes time.

uy, control to be selected at time k. wy, € Uy ().
wy randomness at time k
N time horizon

Dynamics:
i1 = fi(2n, up, wy)

Cost function: additive over time
N—1
E (gN(l‘N) + Z gr(r, ug, wk))
k=0
Inventory Control
zg stock available at the beginning of the kth period

ug stock ordered at the beginning of the kth period

wy demand duirng the kth period with given probability distribution.
Excess demand is backloged and filled as soon as additional inventory is

available.

Dynamics
Tr41 = Tk + Uk — Wk

Cost

E (R(xN) + Z_:(r(xk) + cwc))

=0

=X

The DP Algorithm

Define Ji(xj) to be the expected optimal cost starting from stage k at

state xy.
Bellman’s principle of optimality
In(zNn) = gn(zN)

Jk (l‘k) =

min Ewk{gk(l‘k,w,wk)+Jk+1(fk(l‘k,%,wk))}
ur€UR(zk)

Optimal expected cost for the overall problem: Jy(zg).

SLIDE 7

SLIDE &

SLIDE 9

7 Inventory Control

SLIDE 10
o If r(zy) = axl, wy ~ N(p,0}), then
uy, = cpxy + di, Je(n) = braf + fean + ex
o If r(xy) = pmax(0, —xi) + hmax(0, x;) , then there exist Sy:
W = Sp —wp 1f xp < Sk
8 Optimal trading
— SLIDE 11
e S shares of a stock to be bought within a horizon T'.
e t =1, 2,..., T discrete trading periods.
e Control: Sy number of shares acquired in period ¢ at price P, t =1, 2,..., T
T
e Objective: minF [ZPtSt]
t=1
T
st. > S =8
t=1
e Dynamics:
P = P+ a5 + ¢
where & > 0, ¢, ~ N(0,1)
8.1 DP ingredients
SLIDE 12
o State: (Pi_1, %)
P, _1 price realized at the previous period
W # of shares remaining to be purchased
e Control: S; number of shares purchased at time ¢
e Randommness: ¢;
e Objective: min F [Zthl PtSt]
° Pynamics: P = P4+ a5 + W, = Wiy — Sy, Wi =
S, Wryr1 =0
SLIDE 13

Note that Wry; = 0 is equivalent to the constraint that S must be executed by
period T'

8.2 The Bellman Equation

Je(Peo1, W) = Héiﬂ Ee | PeSe + Jeg1(Pr, Wigq)
Jr(Pr—1,Wrp) =
Hslin ET[PTWT] = (PT_1—|-OzWT)WT
T

Since Wri1 =0 = S, =Wy

8.3 Solution
Jr—1(Pr_o, Wr_1) =

Sr_1

= min Fr_; |:PT—15T—1 + JT(PT—l,WT)]

Sr_1

= min Fp_, [(Pr—s+ aSp_1 +er_1)Sr—1 +

Jr (PT—Z +aSr_1 +ep_1, W1 — ST—l)]

Wr_1
S7 =
T-1 7
3
Jr_i(Pr_o,Wr_1) = Wr_oi(Proo+ ZOZWT—l)a
Continuing in this fashion,
Wr_g
S7 =
T-k)

Jr_p (P Wrs) = Wir(Prosos + — 2 0ty)
Tk (Pr—p—1, Wr_s = Tk (Pr—k-1 2(k+1)a Tk
S

ST = =
! T
a§2 1
P, = P — {1 _
J1 (P, W) 05 5 (—I-T)
* * _ _ * _ ?
Sio= S == 5 = 2

SLIDE 14

SLIDE 15

SLIDE 16

8.4 Different Dynamics

P = P+ a5 +9X + ; a>0
Xe = pXer +me ; Xi=1, pe(-11)

where ¢, ~ N(0,02) and n ~ N(0, 0'5)
8.5 Solution

Wr_g pbr_1
Sy = Xp_
Tk Fr1 T a, Tk

Jr_k(Pr—g—1, Xo—p, Wr—y) = PropWrop + exWi_p, +
b Xy 1 Wr_p + cxXt_p + dy

for k=0,1,...,7 — 1, where:

o 14 1
a = = S ay = o
F 2 k+1) 0
apby, _
by = 4+ % ’ by = v
a1
2b2
ch — plep_1 — P %1 ’ co = 0
dag_q
dp, = dr- + Ck-Nﬁ ; dy = 0.

9 Matrix multiplication

o Matrices: My: ng X ng4a

Objective: Find My - Mo --- My
Example: My - My - Ms; My 01 x 10, My : 10 x 1, M3 : 1 x 10.

My (M3 Msz) 200 multiplications;

(M1 M3)Msz 20 multiplictions.

What is the optimal order for performing the multiplication?

SLIDE 17

SLIDE 18

SLIDE 19

SLIDE 20

e m(i, j) optimal number of scalar multiplications for multiplying Af; ... M;.
e m(i,i) =0
e For < j:

m(i,j) = gklg(m(z, kY 4+m(k+1,7)+ningyinjpr)
i<k<j

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

