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1 Outline Slide 1 1. The knapsack problem 2. The traveling salesman problem 3. The general DP framework 4. Bellman equation 5. Optimal inventory control 6. Optimal trading 7. Multiplying matrices 2 The Knapsack problem Slide 2 nX maximize c xj j
j�1 nXx 2 f0; 1gj
subject to wjxj � K j�1 De�ne iX
Ci(w) � maximize cjxj
j�1 iX
subject to wjxj � w
j�1
xj 2 f0; 1g 2.1 A DP Algorithm Slide 3 � Ci(w): the maximum value that can be accumulated using some of the �rst i items subject to the constraint that the total accumulated weight is equal to w � Recursion 	
�
Ci+1(w) � max Ci(w); Ci(w � wi+1) + ci+1
� By considering all states of the form (i; w) with w � K, algorithm has
complexity O(nK) 1




3 The TSP Slide 4 � G � (V;A) directed graph with n nodes � cij cost of arc (i; j) � Approach: choice of a tour as a sequence of choices � We start at node 1; then, at each stage, we choose which node to visit next. � After a number of stages, we have visited a subset S of V and we are at a current node k 2 S 3.1 A DP algorithm Slide 5 � C(S; k) be the minimum cost over all paths that start at node 1, visit all nodes in the set S exactly once, and end up at node k � � (S; k) a state; this state can be reached from any state of the form S n � fkg;m , with m 2 S n fkg, at a transition cost of cmk � Recursion � �
� �
C(S; k) � min C S n fkg;m + cmk ; k 2 S m2Snfkg � � C f1g; 1 � 0: � Length of an optimal tour is � �
� � min C f1; : : : ; ng; k + ck1 k � � 2 n� Complexity: O n 2 operations 4 Guidelines for constructing DP Algorithms Slide 6 � View the choice of a feasible solution as a sequence of decisions occurring in stages, and so that the total cost is the sum of the costs of individual decisions. � De�ne the state as a summary of all relevant past decisions. � Determine which state transitions are possible. Let the cost of each state transition be the cost of the corresponding decision. � Write a recursion on the optimal cost from the origin state to a destination state. The most crucial step is usually the de�nition of a suitable state. 2 



5 The general DP framework Slide 7 � Discrete time dynamic system described by state xk, k indexes time. � uk control to be selected at time k. uk 2 Uk(xk). � wk randomness at time k � N time horizon � Dynamics: xk+1 � fk(xk; uk; wk) � Cost function: additive over time  !
N�1X E gN (xN ) + gk(xk; uk; wk) k�0 5.1 Inventory Control Slide 8 � xk stock available at the beginning of the kth period � uk stock ordered at the beginning of the kth period � wk demand duirng the kth period with given probability distribution. Excess demand is backloged and �lled as soon as additional inventory is available. � Dynamics xk+1 � xk + uk � wk � Cost   ! N�1X E R(xN ) + (r(xk) + cuk) k�0 6 The DP Algorithm Slide 9 � De�ne Jk(xk) to be the expected optimal cost starting from stage k at state xk. � Bellman's principle of optimality JN (xN ) � gN (xN ) Jk(xk) � � � min Ewk gk(xk; uk; wk) + Jk+1(fk(xk; uk; wk))
uk2Uk(xk) � Optimal expected cost for the overall problem: J0(x0). 3 



7 Inventory Control Slide 10 2 2� If r(xk) � axk, wk � N (�k; �k), then � 2 uk � ckxk + dk; Jk(xk) � bkxk + fkxk + ek � If r(xk) � pmax(0;�xk) + hmax(0; xk) , then there exist Sk: � � Sk � xk if xk � Sk uk � 0 if xk � Sk
8 Optimal trading Slide 11 � S shares of a stock to be bought within a horizon T . � t � 1; 2; : : : ; T discrete trading periods. � Control: St number of shares acquired in period t at price Pt, t � 1; 2; : : : ; T
� T � X � Objective: minE PtSt t�1 T
X
s:t: St � S t�1 � Dynamics: Pt � Pt�1 + �St + �t where � � 0, �t � N (0; 1) 8.1 DP ingredients Slide 12 � State: (Pt�1;Wt) Pt�1 price realized at the previous period Wt # of shares remaining to be purchased � Control: St number of shares purchased at time t � Randomness: �t � � PT � Objective: minE PtStt�1� Dynamics: Pt � Pt�1 + �St + �t Wt � Wt�1 � St�1; W1 � S; WT+1 � 0 Slide 13 Note that WT+1 � 0 is equivalent to the constraint that S must be executed by
period T 4




8.2 The Bellman Equation � � 

Slide 14 Jt(Pt�1;Wt) � min Et PtSt + Jt+1(Pt;Wt+1) St JT (PT�1;WT ) � min ET [PTWT ] � (PT�1 + �WT )WT ST �Since WT+1 � 0 ) ST � WT 8.3 Solution Slide 15 JT�1(PT�2;WT�1) � � � � min ET�1 PT�1ST�1 + JT (PT�1;WT ) ST�1 � � min ET�1 (PT�2 + �ST�1 + �T�1)ST�1 + ST�1 � � �
JT PT�2 + �ST�1 + �T�1;WT�1 � ST�1 � WT�1 ST�1 � 2
 3 JT�1(PT�2;WT�1) � WT�1(PT�2 + �WT�1); 4 Slide 16 Continuing in this fashion, � WT�k ST�k � k + 1 k + 2 JT�k(PT�k�1;WT�k) � WT�k(PT�k�1 + �WT�k) 2(k + 1) S
� S �1 T
 2� � �S 1 J1(P0;W1) � P0S + 1 + 2 T S� � � S1 � S2 � � � � � ST �
 T 5




8.4 Di�erent Dynamics Slide 17 Pt � Pt�1 + �St + �Xt + �t ; � � 0 Xt � �Xt�1 + �t ; X1 � 1 ; � 2 (�1; 1) 2 2where �t � N (0; �� ) and �t � N (0; ��) 8.5 Solution Slide 18 � WT�k �bk�1
ST�k � + XT�k k + 1 2ak�1 2 JT�k(PT�k�1; XT�k;WT�k) � PT�k�1WT�k + akWT�k + 2 bkXT�kWT�k + ckXT�k + dk for k � 0; 1; : : : ; T � 1, where: � � � 1 ak � 1 + ; ; a0 � � 2 k + 1 ��bk�1 bk � � + ; b0 � � 2ak�1 2 2� b2 

k�1 ck � � ck�1 � ; c0 � 0 4ak�1 2 dk � dk�1 + ck�1�� ; d0 � 0 : 9 Matrix multiplication Slide 19 � Matrices: Mk: nk � nk+1 � Objective: Find M1 �M2 � � �MN � Example: M1 �M2 �M3; M1 : 1 � 10, M2 : 10 � 1, M3 : 1 � 10. M1(M2M3) 200 multiplications; (M1M2)M3 20 multiplictions. � What is the optimal order for performing the multiplication� Slide 20 6 



� m(i; j) optimal number of scalar multiplications for multiplyingMi : : :Mj .
� m(i; i) � 0 � For i � j: m(i; j) � min (m(i; k) + m(k + 1; j) + nink+1nj+1)
i�k�j 
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