
Homework: Locking

Read: spinlock.c

Hand-In Procedure

You are to turn in this homework at the beginning of lecture. Please write up your
answers to the exercises below and hand them in to a 6.828 staff member at the beginning
of lecture.

Assignment: In this assignment we will explore some of the interaction between
interrupts and locking.

Make sure you understand what would happen if the kernel executed the following code
snippet:

 struct spinlock lk;
 initlock(&lk, "test lock");
 acquire(&lk);
 acquire(&lk);
(Feel free to use Bochs to find out. acquire is in spinlock.c.)

In xv6, the first acquire turns off interrupts on the local processor using cli, and
interrupts remain off until the release of the last lock (at which point they are enabled
using sti).

Let's see what happens if we turn on interrupts while holding the ide lock. In ide_rw in
ide.c, add a call to sti(); after the call to acquire. Rebuild the kernel and boot it in
Bochs. The kernel should panic almost immediately.

Turn in: explain in a few sentences why the kernel panicked. You may find it useful to
look up the stack trace (the sequence of %eip values printed by panic) in the
kernel.asm listing.

Remove the sti(); you added, rebuild the kernel, and make sure it works again.

Now let's see what happens if we turn on interrupts while holding the kalloc_lock. In
kalloc in kalloc.c, add a call to sti(); after the call to acquire. You will also need to
add #include "x86.h" at the top of the file after the other #include lines. Rebuild the
kernel and boot it in Bochs. It will not panic.

Turn in: explain in a few sentences why the kernel didn't panic. What is different about
kalloc_lock as compared to ide_lock?

This assignment requires the files xv6.pdf and xv6_rev0.zip. You may download them
from the Assignments page.

You do not need to understand anything about the details of the IDE driver to answer this
question, but you may find it helpful to look at which functions acquire each lock, and
then at when those functions get called.

(There is a very small but non-zero chance that the kernel will panic with the extra
sti(); in kalloc. If the kernel does panic, make doubly sure that you removed the
sti(); call from ide_rw. If it continues to panic and the only extra sti(); is in bio.c,
then mail 6.828 staff and think about buying a lottery ticket.)

Turn in: Why does release clear lock->pcs[0] and lock->cpu before clearing lock-
>locked? Why not wait until after?

	Homework: Locking

