
Massachusetts Institute of Technology Handout 10
6.857: Network and Computer Security September 30, 2003
Professor Ronald L. Rivest

Problem Set 2 Solutions

Today’s fun-fact is about jointly-authored submissions. During your professional lives, you will frequently
be asked to jointly submit a letter, a paper, or an article. When you submit a document that has multiple
names on it, you should not write sentences that use the word “I” as their subject. Doing so is a dead
give-away that the paper was not authored by the group, but was instead authored by a single person. (It
also comes across as somewhat haughty to the reader.)

For example, this sentence appeared in a homework solution to problem set #2 that had four names on
the top:

The approach I used to solve this problem is as follows.

How should we take such a sentence?
Please remember that these homeworks are meant to be done in groups. This means that each student

is responsible for all of the work. It does not mean that you have license to split up the problems and have
each student work on a different one.

Submitted homework solutions that used the first-person pronoun were penalized between 1 and 2 points.

Problem 2-1. Two-time pad (Courtesy of Rui L. Viana, Conor M. Murray, Pallavi Naresh and Richard Hansen.)
TA Notes: Many students enjoyed the two-time pad problem, and so many people got it that we should
make the problem harder next year. The vast majority of students tried XORing each of the texts with the
other texts and then seeing which of the 3 results had no high-order bits set. One group of students did a
statistical analysis of the distribution of the resultant XOR strings with the theoretical distribution of an
XOR of standard english text against standard english text, but it turned out that this approach was not
needed.

Once the pairs were distinguished, most students wrote a program that allowed them to type in sample text
and then to see the results of XORing the text in a 1-character sliding window along the entire length of the
chosen combined text. This seems to have been a pretty manual process, although one group of students
automated the process by doing a brute-force dictionary lookup off all the words in the web2a file and then
doing a statistical analysis on the result. (As it turns out, it was easier to work manually because of the high
predictability of the text.) One of those most interesting experiences in solving this assignment is reported
below:

Oddly enough, we had the movie “Cube” playing, and got to talking about people dying. Some
how we someone suggested Johnny Cash, and we tried “Ring of fire.” Oddly enough our program
spouted (among many other things) a bunch of primes. (This really freaked us out, because as I
said ... we had just been watching Cube.)

Our only dissappointment with the example was that many students, once they identified the source string,
simply reported the source string, rather than what was actually in the plaintext. As a result, many students
reported that the Hamlet quote ended with the word “many a day” rather than “many a” or “many a d”.
(In fact, the quote ended with a single ‘d’ followed by a newline.) Likewise, the set of prime numbers should
have been reported as ending with a single digit “1,” as the following 3-digit number was similarly truncated.
Depending on how egregious the misreporting was, between 0 and 2 points were taken off.

The following solution was submitted by Rui L. Viana, Conor M. Murray, Pallavi Naresh and
Richard Hansen:

(a)	 Approach Our approach was to first analyze the messages to find the pairs and then to write a
program to assist us in the guessing process. The properties of exclusive or (XOR) aided us in finding
the pairs and helped us gain information about the plaintext (see the section on decrypting below).

2 6.857 : Handout 10: Problem Set 2 Solutions

We exploited the predictability of language by trying common words (both English and code) in
search of likely plaintext. Most of the trial and error was not automated as it required a user to
analyze the results of one guess, and decide the next course of action effectively. Though Rui wrote
code to run the messages through a dictionary in search of matches, which may have helped in larger
problems involving two-time pads, it proved unnecessary.
Finding the Pairs If we assume the plaintexts are in (non-extended) ASCII code then we know the
first bit of each byte is zero. For two cipher texts encrypted with the same key, the leading 0’s on
every byte will be encrypted to the same bit, hence when we XOR two messages that used the same
pad we would expect the first bit of every byte to be 0. We wrote a program to print out the XOR
value of two input files in hex (a leading 0 in binary corresponds to 7 or less in hex) and inspected the
values. By trial and error we were able to find exactly three pairs of files that fit this criterion and so
were we confident these pairs were encrypted using the same pad and that the files were encoded in
ASCII.
The assumptions on which we based our matching of the files could have been incorrect. We were
however able to make progress using these pairs in a reasonable amount of time. If working with
these pairs had not been fruitful, further analysis would have been required, perhaps eliminating the
ASCII encoding assumption. In this case, however, it was unnecessary.
Decrypting We wrote a program that took, as input, 2 files (C1 and C2) and a string (S). The
output would be the plaintext of one of the messages corresponding to S i.e. we would enter a guess at
a substring of one of the plaintexts and the program would output the plaintext of the other message
given this string. It would output (n − b + 1) strings of the same length as S corresponding to all the
possible positions of the substring. This works because of the properties of XOR:

C1 = M1 ⊕ K, C2 = M2 ⊕ K
C1 ⊕ C2 = (M1 ⊕ K) ⊕ (M2 ⊕ K) = M1 ⊕ M2

(From 6.857 Lecture 4 notes)

Now we had an efficient way to guess at substrings and view the results. We started guessing common

words (e.g. “The ”, “ the ”). We discovered the beginning of C code in messages 1 and 3 and were

able to guess at the code until recovering enough of the play script to perform a Google search for it.

To decrypt messages 4 and 5 we guessed common English words until it seemed like the corresponding

message could be in English, usually swapping from one message to the other as we were able to expand

the strings. It was speeded up by recognizing the TA’s names and text from the problem set.

The last pair (2 and 6) was the hardest to decrypt. By looking at the first byte in more detail we

determined that if in one message it was a letter in the other it must be a number. We knew the

second bytes in the messages were equal (the second byte of M2 ⊕ M6 was 0x00) and we guessed it

to be a space. This led us to think about sequences of numbers, soon after arriving at the primes.

Here is the Java code for the program we used to assist us in decoding the ciphertexts (Decrypt.java):

import java.io.FileInputStream;

public class Decrypt {
public static void main(String[] args) throws Exception {

if(args.length!=3) {
usage();
System.exit(0);

}

xor(args[0],args[1],args[2]);

}

public static void usage() {
System.out.println("Usage:");
System.out.println("java Decrypt cipher1 cihper2 word");

}

/* prints the result of cipher1 (xor) cipher2 (xor) theWord, where

theWord is taken to start at every possible location.

3 6.857 : Handout 10: Problem Set 2 Solutions

@param cipher1FileName the name of the first cipher text

@param cipher2FileName the name of the second cipher text

@param theWord the word to be matched against the xor

*/

public static void xor(String cipher1FileName,

String cipher2FileName,

String theWord) throws Exception {

// the length of the cipher texts

int length = 128;

// open the two cipher text files

FileInputStream file1 = new FileInputStream(cipher1FileName);

FileInputStream file2 = new FileInputStream(cipher2FileName);

// f1 will contain the bytes of cipher1 and f2 the bytes of

// cipher2.

int[] f1 = new int[length];

int[] f2 = new int[length];

// xor will contain the xor of the two ciphers, i.e., the xor of

// the two plain texts.

int[] xor = new int[length];

// intialize arrays

for(int i=0;i<length;i++) {

f1[i]=0; f2[i]=0; xor[i]=0;

}

// xor the cipher texts
for(int i=0;i<length;i++) {

f1[i] = file1.read();

f2[i] = file2.read();

xor[i]= f1[i]^f2[i];

if(f1[i]==(-1) && f2[i]==(-1)) break;

}

// wordLength is the length of the word to be compared against the

// xor and the word[] is the same as theWord except that it is

// an array.

int wordLength = theWord.length();

int[] word = new int[wordLength];

// construct word[]

for(int i=0;i<wordLength;i++) {

word[i] = (int)theWord.charAt(i);

}

// now we’ll xor word[] against the xor os the msgs, starting at

// each byte.

for(int i=0;i<length-(wordLength-1);i++) {

System.out.print(i+" -------> ");

// possible contains the result of xor between word[] and xor[]

// starting at byte i

char[] possible = new char[wordLength];

// do the xor and print at the same time

for(int j=0;j<wordLength;j++) {

possible[j] = (char)(word[j]^xor[i+j]);
// only print character if it’s nothing weird
if(possible[j]>31 && possible[j]<127) {

System.out.print(possible[j]);
}
// if it is weird, print the int value of the character
else System.out.print("{"+((int)possible[j])+"}");

}

System.out.println("");

}

}

}

(b) Pairs

• Messages 1 and 3

• Messages 2 and 6

• Messages 4 and 5

(c) Plaintexts

4 6.857 : Handout 10: Problem Set 2 Solutions

• Message 1 (or 3):
==
Offset Message Bytes (in hex) ASCII
==

00 54 68 65 20 66 61 69 72 20 4F 70 68 65 6C 69 61 The fair Ophelia
10 21 20 4E 79 6D 70 68 2C 20 69 6E 20 74 68 79 20 ! Nymph, in thy
20 6F 72 69 73 6F 6E 73 20 0A 42 65 20 61 6C 6C 20 orisons Be all
30 6D 79 20 73 69 6E 73 20 72 65 6D 65 6D 62 65 72 my sins remember
40 27 64 2E 0A 4F 50 48 45 4C 49 41 0A 47 6F 6F 64 ’d. OPHELIA Good
50 20 6D 79 20 6C 6F 72 64 2C 0A 48 6F 77 20 64 6F my lord, How do
60 65 73 20 79 6F 75 72 20 68 6F 6E 6F 75 72 20 66 es your honour f
70 6F 72 20 74 68 69 73 20 6D 61 6E 79 20 61 20 0A or this many a

==

• Message 2 (or 6):
==
Offset Message Bytes (in hex) ASCII
==

00 32 20 33 20 35 20 37 20 31 31 20 31 33 20 31 37 2 3 5 7 11 13 17
10 20 31 39 20 32 33 20 32 39 20 33 31 20 33 37 20 19 23 29 31 37
20 34 31 20 34 33 20 34 37 20 35 33 20 35 39 20 36 41 43 47 53 59 6
30 31 20 36 37 20 37 31 20 37 33 20 37 39 20 38 33 1 67 71 73 79 83
40 20 38 39 20 39 37 20 31 30 31 20 31 30 33 20 31 89 97 101 103 1
50 30 37 20 31 30 39 20 31 31 33 20 31 32 37 20 31 07 109 113 127 1
60 33 31 20 31 33 37 20 31 33 39 20 31 34 39 20 31 31 137 139 149 1
70 35 31 20 31 35 37 20 31 36 33 20 31 36 37 20 0A 51 157 163 167

==

• Message 3 (or 1):
==
Offset Message Bytes (in hex) ASCII
==

00 23 69 6E 63 6C 75 64 65 20 3C 73 74 64 69 6F 2E #include <stdio.
10 68 3E 0A 23 69 6E 63 6C 75 64 65 20 3C 73 74 64 h> #include <std
20 6C 69 62 2E 68 3E 0A 23 69 6E 63 6C 75 64 65 20 lib.h> #include
30 3C 73 74 72 69 6E 67 2E 68 3E 0A 23 69 6E 63 6C <string.h> #incl
40 75 64 65 20 3C 65 72 72 2E 68 3E 0A 0A 6D 61 69 ude <err.h> mai
50 6E 28 69 6E 74 20 61 72 67 63 2C 20 63 68 61 72 n(int argc, char
60 20 2A 2A 61 72 67 76 29 0A 7B 0A 20 20 20 20 69 **argv) { i
70 66 28 61 72 67 63 21 3D 33 29 7B 0A 09 66 70 0A f(argc!=3){ fp

==

• Message 4 (or 5):
==
Offset Message Bytes (in hex) ASCII
==

00 53 6C 6F 77 6C 79 2C 20 79 6F 75 20 72 65 61 6C Slowly, you real
10 69 7A 65 20 74 68 61 74 20 61 20 6F 6E 65 2D 74 ize that a one-t
20 69 6D 65 20 70 61 64 20 63 61 6E 20 6F 6E 6C 79 ime pad can only
30 20 62 65 20 75 73 65 64 20 6F 6E 63 65 2E 20 59 be used once. Y
40 6F 75 20 68 61 76 65 20 73 69 78 20 6D 65 73 73 ou have six mess
50 61 67 65 73 2D 2D 2D 73 6F 20 73 6F 6D 65 20 6F ages---so some o
60 66 20 74 68 65 20 70 61 64 73 20 6D 75 73 74 20 f the pads must
70 68 61 76 65 20 62 65 65 6E 20 72 65 2D 75 73 0A have been re-us

==

• Message 5 (or 4):
==
Offset Message Bytes (in hex) ASCII
==

00 53 69 6D 73 6F 6E 20 47 61 72 66 69 6E 6B 65 6C Simson Garfinkel
10 20 61 6E 64 20 43 68 72 69 73 74 6F 70 68 65 72 and Christopher
20 20 50 65 69 6B 65 72 74 20 54 41 20 36 2E 38 35 Peikert TA 6.85
30 37 20 69 6E 20 36 2D 31 32 30 2E 0A 54 68 69 73 7 in 6-120. This
40 20 6D 65 73 73 61 67 65 20 69 73 20 76 65 72 79 message is very
50 20 64 69 66 66 69 63 75 6C 74 20 74 6F 20 64 65 difficult to de
60 63 72 79 70 74 2C 20 62 75 74 20 79 6F 75 20 63 crypt, but you c
70 61 6E 20 64 65 63 72 79 70 74 20 69 74 2E 0A 0A an decrypt it.

==

• Message 6 (or 2):
==
Offset Message Bytes (in hex) ASCII
==

00 49 20 66 65 6C 6C 20 69 6E 74 6F 20 61 20 62 75 I fell into a bu
10 72 6E 69 6E 67 20 72 69 6E 67 20 6F 66 20 66 69 rning ring of fi
20 72 65 0A 49 20 77 65 6E 74 20 64 6F 77 6E 20 64 re I went down d
30 6F 77 6E 20 64 6F 77 6E 0A 41 6E 64 20 74 68 65 own down And the
40 20 66 6C 61 6D 65 73 20 77 65 6E 74 20 68 69 67 flames went hig

5 6.857 : Handout 10: Problem Set 2 Solutions

50 68 65 72 0A 41 6E 64 20 69 74 20 62 75 72 6E 73 her And it burns
60 20 62 75 72 6E 73 20 62 75 72 6E 73 0A 54 68 65 burns burns The
70 20 72 69 6E 67 20 6F 66 20 66 69 72 65 0A 54 0A ring of fire T

==

Distribution of scores on problem 1:
70

60

50

30

40
students

20

10

0
0

1 2 3 4 5 6 7
points awarded

8 9 10

Average score: 8.92

Problem 2-2. Hash Soup
(Courtesy of Rui L. Viana, Conor M. Murray, Pallavi Naresh and Richard Hansen.)
TA Notes: There were several common mistakes made in this problem: not explicitly stating assumptions

(especially about MD5 and SHA-1), making a mathematical error and not “gut-checking” the final answer,

misunderstanding the “birthday paradox” nature of the problem, and not settling upon a specific non-trivial

probability (as opposed to an algebraic expression) for the number of files in the world or probability of

collision.

In order to do this problem, one must make a specific assumption about the hash functions in question. One

might assume that someone has completely broken MD5; in this case, there is certainly a pair of non-identical

files having the same hash code! (Nobody assumed this, though.) Alternatively, one should assume that MD5

and SHA-1 are pseudorandom, i.e. it is infeasible to correlate their outputs on different inputs. (Remember:

these hash functions are not proven to be pseudorandom, it’s just a widely-believed assumption!)

Many groups made some kind of mental or mathematical error, such as confusing the probability that there

exists a collision with the probability that there is no collision. This led to claims that there is certainly

a pair of non-identical files which collide, when in fact the probability of such an event is extremely small

(about 2−40, or one in a quadrillion, for MD5 under reasonable assumptions).

About 5 points were allocated for a reasonable estimate of the number of unique files on the planet, and 5

points for a correct mathematical analysis that settled upon a specific, non-trivial probability.

The following solution was submitted by Rui L. Viana, Conor M. Murray, Pallavi Naresh and
Richard Hansen:

This problem asks us to estimate the probability that there are two non-identical files in the world that have
the same hash code. We believe that this is not a very useful exercise for two reasons: (1) It is difficult to
estimate the number of files in the world within a few orders of magnitude so any probability estimate will
have little useful value, and (2) few people really care about the actual probability—they just want to know
if a collision is improbable enough to not be a security concern.

So, instead of trying to determine a solution to the problem as asked, we are going to answer what we assume
to be the underlying question: obtain upper bounds on the probabilities.

This question is much like that posed by the classic birthday problem: given a group of size m, what is the
probability that at least two members of the group have the same birthday. We can generalize this problem
as follows: given q balls and N bins, if we randomly assign balls to bins, what is the probability that at least
two balls will fall in the same bin?

In our case, the balls are the set of all files in the world and the bins are all the possible output hashes
resulting from each respective hashing algorithm.

6 6.857 : Handout 10: Problem Set 2 Solutions

To calculate the total number of files in the world q, we can make the following estimate:

According to some estimates there are approximately half a billion installed PCs in the world [1]. Let us
make this estimate more generous, and assume there are a total of 1 billion PCs and file servers in the world.
Let us be even more generous and assume that on average, each machine contains approximately 1 million
unique files. This gives us a total of 1 × 1015 files in existence.

[This is an extremely generous estimate. Most home PCs have less than 100,000 files, most of which are not
unique. The number of file servers is most certainly no where near the number of PCs and even file servers
do not contain 1 million unique files on average.]

From the solution to the generalized birthday problem, we can calculate the probability that two files hash
to the same value as follows (from [2]):

Let C denote the event that at least two files hash to the same value. Let N denote the number of
(equiprobable) hash values. Let q denote the number of files in the world.

N !
Pr(C) = 1 −

(N − q)!N q

From [3], the lower and upper bounds on this equation are:

Pr(C) ≤
q(q − 1)

2N

Pr(C) ≥ 1 − e−q(q−1)/2N

Pr(C) ≥ 0.3
q(q − 1)

N

For MD4, N = 2128 ≈ 3 × 1038 . Therefore,

1 × 1030

Pr(CMD4) �
7 × 1038

≈ 1 × 10−9

For SHA-1, N = 2160 ≈ 1 × 1048 .

1 × 1030

Pr(CSHA−1) �
3 × 1048

≈ 3 × 10−19

As we can see, for both MD4 and SHA-1, the size of N is so much greater than q that the probability of a
collision somewhere in the world is quite remote (even with our extremely generous estimates).

References

[1] http://www.pipe21.com/researchportal/_samples/reports/sample1.htm

[2] http://mathworld.wolfram.com/BirthdayProblem.html

[3] http://www.cs.ucsd.edu/users/mihir/papers/gb.pdf, page 242

�

�

7 6.857 : Handout 10: Problem Set 2 Solutions

Distribution of scores on problem 2:
70

60

50

30

40
students

20

10

0
0

1 2 3 4 5 6 7
points awarded

8 9 10

Average score: 8.03

Problem 2-3. One-Time MAC, Revisited (Courtesy of Rohit Rao, Joy Forsythe, Leah Oats, and Sharon Cohen.)
TA Notes: The biggest mistake on this problem was arguing that, in order to make a forgery, the adversary
must guess the entire key (a1, . . . , at, b). In fact, given a valid pair (M,T), and for a fixed choice of message
M � and tag T �, there are several keys ˜

K (M
�) and T = MAC ̃K for which T � = MAC ̃ K (M) (there are pt−1 such

keys, to be precise). There’s no longer a one-to-one mapping between potential keys and the corresponding
MAC tags for M �. With this in mind, an argument like the one given in lecture doesn’t go through without
some modifications.

One geometric way to interpret this new MAC is in t + 1 dimensions (the special case of t = 1 is exactly
the MAC we saw in lecture). The t free dimensions correspond to the message blocks M1, . . . , Mt, and the
(t + 1)st dimension corresponds to the MAC value for the given blocks. The key specifies a t-dimensional
hyperplane on which all the valid (message, MAC) pairs lie. The adversary is given one point (M,T) on the
plane, which yields no information about the orientation of the plane. For every message M � =� M , every
hypothesized MAC tag T � is equally likely (there are exactly pt−1 planes that go through both (M,T) and
(M �, T �)). Therefore the best the adversary can do is guess the correct tag with probability 1/p.

The following solution was submitted by Rohit Rao, Joy Forsythe, Leah Oats, and Sharon
Cohen:

Proof Idea: The general idea of this proof follows directly from the proof of the one-time MAC that was
given in class. We know that MACk (M) = (aiMi) + b. We think of this new one-time MAC as a series
of traditional one-time MAC operations:

Y0 = b (mod p)
Y1 = a1M1 + Y0 (mod p)
Y2 = a2M2 + Y1 (mod p)

· · ·
Yt = atMt + Yt−1 (mod p)

By recursively substituting in for the Y s and gathering terms, we can see that Yt is the one-time MAC
described in the problem set.

To show that this MAC is secure, let’s look at it inductively. Suppose the adversary is given a valid
(M,MACk (M)) pair, and is trying to forge the MAC for a message M �. We know Y = b is uniformly random 0

�

(even conditioned on what the adversary knows). Now suppose M � = Mi; then Yi
� = aiMi

� + Yi
�
−1 (mod p)i

is random and independent of the adversary’s view, due to the security of the one-time MAC presented in
class. Inductive case: given that Y is uniformly random (conditioned on the adversary’s knowledge), then i

�

+ Yi
� (mod p) is too, because the term Y is. Therefore Yt

� is uniformly random, even Yi
�
+1 = ai+1Mi

�
+1 i

�

against an unbounded adversary, and the MAC is secure.

8 6.857 : Handout 10: Problem Set 2 Solutions

For a message M of length n, we can compute the number of key bits necessary for both schemes. Old:
M ∈ Zp p ≥ n, and |k|

k
= 2 p k ≥ 2n. New: Mi ∈ Zp for all i implies p ≈ n/t where t is the ⇒ | | | | ⇒ | | | |

number of message blocks. | | = (t + 1)|p| ⇒ |k| ≈ (t + 1)n/t = n + n/t. If we choose a fixed block size s,

then we can let t = n/s. Then |k| ≈ n + s.

For large n, the new scheme will nearly halve the number of key bits that need to be generated.

Distribution of scores on problem 3:
70

60

50

40
students

30

20

10

0

0 1 2 3 4 5 6 7 8 9 10

points awarded
Average score: 7.46

