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Deviations 
In some cases, a random variable is likely to be very close to its expected value. 
For example, if we flip 100 fair, mutually-independent coins, it is very likely that 
we will get about 50 heads. In fact, we proved in Section 17.5 that the probability 
of getting fewer than 25 or more than 75 heads are each less than 3 � 10�7. In such 
cases, the mean provides a lot of information about the random variable. 

In other cases, a random variable is likely to be far from its expected value. For 
example, suppose we flipped 100 fair coins that are glued together so that they all 
come out “heads” or they call all come out “tails.” In this case, the expected value 
of the number of heads is still 50, but the actual number of heads is guaranteed to 
be far from this value—it will be 0 or 100, each with probability 1=2. 

Mathematicians have developed a variety of measures and methods to help us 
understand how a random variable performs in comparison to its mean. The sim
plest and most widely used measure is called the variance of the random variable. 
The variance is a single value associated with the random variable that is large for 
random variables that are likely to deviate significantly from the mean and that is 
small otherwise. 

19.1 Variance 

19.1.1 Definition and Examples 

Consider the following two gambling games: 

Game A: You win $2 with probability 2=3 and lose $1 with probability 1=3. 

Game B: You win $1002 with probability 2=3 and lose $2001 with probabil
ity 1=3. 

Which game would you rather play? Which game is better financially? We have the 
same probability, 2/3, of winning each game, but that does not tell the whole story. 
What about the expected return for each game? Let random variables A and B be 
the payoffs for the two games. For example, A is 2 with probability 2/3 and -1 with 
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probability 1/3. We can compute the expected payoff for each game as follows: 

2 1
ExŒA� D 2 �

3 
C .�1/ �

3 
D 1; 

2 1
ExŒB� D 1002 � C .�2001/ � D 1: 

3 3 

The expected payoff is the same for both games, but they are obviously very 
different! The stakes are a lot higher for Game B and so it is likely to deviate 
much farther from its mean than is Game A. This fact is captured by the notion of 
variance. 

Definition 19.1.1. The variance VarŒR� of a random variable R is 

VarŒR� WWD ExŒ.R � ExŒR�/2�: 

In words, the variance of a random variable R is the expectation of the square of 
the amount by which R differs from its expectation. 

Yikes! That’s a mouthful. Try saying that 10 times in a row! 
Let’s look at this definition more carefully. We’ll start with R � ExŒR�. That’s 

the amount by which R differs from its expectation and it is obviously an important 
measure. Next, we square this value. More on why we do that in a moment. Finally, 
we take the the expected value of the square. If the square is likely to be large, then 
the variance will be large. If it is likely to be small, then the variance will be small. 
That’s just the kind of statistic we are looking for. Let’s see how it works out for 
our two gambling games. 

We’ll start with Game A: (
A � ExŒA� D

1 

�2 (
with probability 2 

3 

with probability 1 
3 

.A � ExŒA�/2 
D

1 

4 

with probability 2 
3 

with probability 1 
3 

ExŒ.A � ExŒA�/2� D 1 � 
2

3 
C 4 � 

1

3

VarŒA� D 2: (19.1)
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For Game B, we have (
3
1 
3 

2 
3
1 
3

2 

1001 with probability
B � ExŒB� D

�2002 with probability(
1;002;001 with probability

.B � ExŒB�/2 
D

4;008;004 with probability

ExŒ.B � ExŒB�/2� D 1;002;001 �
3

2 
C 4;008;004 �

3

1 

VarŒB� D 2;004;002: 

The variance of Game A is 2 and the variance of Game B is more than two 
million! Intuitively, this means that the payoff in Game A is usually close to the 
expected value of $1, but the payoff in Game B can deviate very far from this 
expected value. 

High variance is often associated with high risk. For example, in ten rounds 
of Game A, we expect to make $10, but could conceivably lose $10 instead. On 
the other hand, in ten rounds of Game B, we also expect to make $10, but could 
actually lose more than $20,000! 

Why Bother Squaring? 

The variance is the average of the square of the deviation from the mean. For this 
reason, variance is sometimes called the “mean squared deviation.” But why bother 
squaring? Why not simply compute the average deviation from the mean? That is, 
why not define variance to be ExŒR � ExŒR��? 

The problem with this definition is that the positive and negative deviations from 
the mean exactly cancel. By linearity of expectation, we have: � � � � 

Ex R � ExŒR� D ExŒR� � Ex ExŒR� : 

Since ExŒR� is a constant, its expected value is itself. Therefore � � 
Ex R � ExŒR� D ExŒR� � ExŒR� D 0: 

By this definition, every random variable would have zero variance, which would 
not be very useful! Because of the square in the conventional definition, both pos
itive and negative deviations from the mean increase the variance, and they do not 
cancel. 

Of course, we could also prevent positive and negative deviations from canceling 
by taking an absolute value. In other words, we could compute ExŒ jR � ExŒR�j �. 
But this measure doesn’t have the many useful properties that variance has, and so 
mathematicians went with squaring. 
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19.1.2 Standard Deviation 

Because of its definition in terms of the square of a random variable, the variance 
of a random variable may be very far from a typical deviation from the mean. For 
example, in Game B above, the deviation from the mean is 1001 in one outcome 
and -2002 in the other. But the variance is a whopping 2,004,002. 

From a dimensional analysis viewpoint, the “units” of variance are wrong: if the 
random variable is in dollars, then the expectation is also in dollars, but the variance 
is in square dollars. 

For these reasons, people often describe the deviation of a random variable using 
standard deviation instead of variance. 

Definition 19.1.2. The standard deviation �R of a random variable R is the square 
root of the variance: p q

�R WWD VarŒR� D ExŒ.R � ExŒR�/2�: 

So the standard deviation is the square root of the mean of the square of the 
deviation, or the root mean square for short. It has the same units—dollars in our 
example—as the original random variable and as the mean. Intuitively, it measures 
the average deviation from the mean, since we can think of the square root on the 
outside as roughly canceling the square on the inside. 

For example, the standard deviations for A and B are p
VarŒA� D

p
2 � 1:41;�A Dp p

�B D VarŒB� D 2; 004; 002 � 1416: 

The random variable B actually deviates from the mean by either positive 1001 
or negative 2002; therefore, the standard deviation of 1416 describes this situation 
reasonably well. 

19.1.3 An Alternative Formulation 

Applying linearity of expectation to the formula for variance yields a convenient 
alternative formula. 

Lemma 19.1.3. For any random variable R, 

VarŒR� D ExŒR2� � Ex2ŒR�: 

Here we use the notation Ex2ŒR� as shorthand for .ExŒR�/2 . Remember that 
ExŒR2� is generally not equal to Ex2ŒR�. We know the expected value of a product 
is the product of the expected values for independent variables, but not in general. 
And R is not independent of itself unless it is constant. 
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Proof of Lemma 19.1.3. Let � D ExŒR�. Then 

VarŒR� D ExŒ.R � ExŒR�/2� (Definition 19.1.1 of variance) 

D ExŒ.R � �/2� (definition of �) 

D ExŒR2 
� 2�R C � 2� 

D ExŒR2� � 2� ExŒR� C � 2 (linearity of expectation) 

D ExŒR2� � 2�2 
C � 2 (definition of �) 

D ExŒR2� � � 2 

D ExŒR2� � Ex2ŒR�: (definition of �) � 

For example, let’s take another look at Game A from Section 19.1 where you 
win $2 with probability 2=3 and lose $1 with probability 1=3. Then 

2 1
ExŒA� D 2 � C .�1/ � D 1 

3 3 

and 
ExŒA2� D 4 � 

2 
C 1 � 

1 
D 3: 

3 3 
By Lemma 19.1.3, this means that 

VarŒA� D ExŒA2� � Ex2ŒA� D 3 � 12 
D 2; 

confirming the result in Equation 19.1. 
The alternate formulation of variance given in Lemma 19.1.3 has a cute implica

tion: 

Corollary 19.1.4. If R is a random variable, then ExŒR2� � Ex2ŒR�. 

Proof. We defined VarŒR� as an average of a squared expression, so VarŒR� is non
negative. Then we proved that VarŒR� D ExŒR2� � Ex2ŒR�. This implies that 
ExŒR2� � Ex2ŒR� is nonnegative. Therefore, ExŒR2� � Ex2ŒR�. � 

In words, the expectation of a square is at least the square of the expectation. 
The two are equal exactly when the variance is zero: 

ExŒR2� D Ex2ŒR� iff ExŒR2� � Ex2ŒR� D 0 iff VarŒR� D 0: 

This happens precisely when � � 
Pr R D ExŒR� D 1I 

namely, when R is a constant.1 

1Technically, R could deviate from its mean on some sample points with probability 0, but we are 
ignoring events of probability 0 when computing expectations and variances. 
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19.1.4 Indicator Random Variables 

Computing the variance of an indicator random variable is straightforward given 
Lemma 19.1.3. 

Lemma 19.1.5. Let B be an indicator random variable for which PrŒB D 1� D p. 
Then 

VarŒB� D p � p 2 
D p.1 � p/: (19.2) 

Proof. By Lemma 18.1.3, ExŒB� D p. But since B only takes values 0 and 1, 
B2 D B . So 

VarŒB� D ExŒB2� � Ex2ŒB� D p � p 2; 

as claimed. � 

For example, let R be the number of heads when you flip a single fair coin. Then � �21 1 1
VarŒR� D � D (19.3)

2 2 4 

and r 
1 1 

�R D D : 
4 2 

19.1.5 Mean Time to Failure 

As another example, consider the mean time to failure problem, described in Sec
tion 18.1.4. If the system crashes at each step with probability p, then we already 
know that the mean time to failure is 1=p. In other words, if C is the number of 
steps up to and including the step when the first crash occurs, then 

1
ExŒC � D : 

p 

What about the variance of C ? To use Lemma 19.1.3, we need to compute ExŒC 2�. 
As in Section 18.1.4, we can do this by summing over all the sample points or we 
can use the Law of Total Expectation. The latter approach is simpler, so we’ll do 
that. The analysis breaks into two cases: the system crashes in the first step or it 
doesn’t. Hence, 

ExŒC 2� D 12 
� p C ExŒ.C C 1/2�.1 � p/ 

D p C ExŒC 2�.1 � p/ C 2 ExŒC �.1 � p/ C .1 � p/ � � 
D 1 C ExŒC 2�.1 � p/ C 2

1 � p
: 

p 
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Simplifying, we find that 

p ExŒC 2� D 
2 � p 

p 

and that 
ExŒC 2� D 

2 � p
:

2p

Using Lemma 19.1.3, we conclude that 

VarŒC � D ExŒC 2� � Ex2ŒC � 

2 � p 1 
D 

2 
� 

2p p

1 � p 
:D 

2p

19.1.6 Uniform Random Variables 

Computing the variance of a uniform random variable is also straightforward given 
Lemma 19.1.3. For example, we can compute the variance of the outcome of a fair 
die R as follows: 

1 91
ExŒR2� D .12 

C 22 
C 32 

C 42 
C 52 

C 62/ D ; 
6 6 � �2 

Ex2ŒR� D 3
1 
D 

49
; 

2 4 

VarŒR� D ExŒR2� � Ex2ŒR� D 
91 
� 

49 
D 

35
: 

6 4 12 

For a general uniform random variable R on f1; 2; 3; : : : ng, the variance can be
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computed as follows: 
1

ExŒR� D .1 C 2 C � � � C n/ 
n 

D
n

1 
� 

n.n

2 

C 1/ 

n C 1 
:D 

2 

ExŒR2� D 
1

.12 
C 22 

C � � � C n 2/ 
n 
1 .2n C 1/n.n C 1/

D
n 
� 

6 
.2n C 1/.n C 1/ 

:D 
6 

VarŒR� D ExŒR2� � Ex2ŒR� � �2.2n C 1/.n C 1/ n C 1 
D 

6 
� 

2 

n2 � 1
:D 

12 

19.1.7 Dealing with Constants 

It helps to know how to calculate the variance of aR C b: 

Theorem 19.1.6. Let R be a random variable, and let a and b be constants. Then 

VarŒaR C b� D a 2 VarŒR�: (19.4) 

Proof. Beginning with Lemma 19.1.3 and repeatedly applying linearity of expec
tation, we have: 

VarŒaR� D ExŒ.aR C b/2� � Ex2ŒaR C b� 

D ExŒa2R2 
C 2abR C b2� � .a ExŒR� C b/2 

D a 2 ExŒR2� C 2ab ExŒR� C b2 
� a 2 Ex2ŒR� � 2ab ExŒR� � b2 

D a 2 ExŒR2� � a 2 Ex2ŒR� 

D a 2 ExŒR2� � Ex2ŒR� 

D a 2 VarŒR� (by Lemma 19.1.3): � 

Corollary 19.1.7. 
�aRCb D jaj �R: 
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19.1.8 Variance of a Sum 

In general, the variance of a sum is not equal to the sum of the variances, but 
variances do add for independent random variables. In fact, mutual independence 
is not necessary: pairwise independence will do. 

Theorem 19.1.8. If R1 and R2 are independent random variables, then 

VarŒR1 CR2� D VarŒR1� C VarŒR2�: (19.5) 

Proof. As with the proof of Theorem 19.1.6, this proof uses repeated applications 
of Lemma 19.1.3 and Linearity of Expectation. 

VarŒR1 CR2� D ExŒ.R1 CR2/2� � Ex2ŒR1 CR2� 

D ExŒR1
2 
C 2R1R2 CR2� � .ExŒR1� C ExŒR2�/2 

D ExŒR1
2� C 2 ExŒR1R2� C ExŒR2

2� 

� Ex2ŒR1� � 2 ExŒR1� ExŒR2� � Ex2ŒR2� 

D VarŒR1� C VarŒR2� C 2.ExŒR1R2� � ExŒR1� ExŒR2�/ 

D VarŒR1� C VarŒR2�: 

The last step follows because 

ExŒR1R2� D ExŒR1� ExŒR2� 

when R1 and R2 are independent. � 

Note that Theorem 19.1.8 does not necessarily hold if R1 and R2 are dependent 
since then it would generally not be true that 

ExŒR1R2� D ExŒR1� ExŒR2� (19.6) 

in the last step of the proof. For example, suppose that R1 D R2 D R. Then 
Equation 19.6 holds only if R is essentially constant. 

The proof of Theorem 19.1.8 carries over straightforwardly to the sum of any 
finite number of variables. 

Theorem 19.1.9 (Pairwise Independent Additivity of Variance). If R1, R2, . . . , Rn 

are pairwise independent random variables, then 

VarŒR1 CR2 C � � � CRn� D VarŒR1� C VarŒR2� C � � � C VarŒRn�: (19.7) 

Unfortunately, there is no product rule for computing variances, even if the ran
dom variables are mutually independent. However, we can use Theorem 19.1.9 to 
quickly compute the variance of a random variable with a general binomial distri
bution. 
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19.1.9 Binomial Distributions 

Lemma 19.1.10 (Variance of the Binomial Distribution). If J has a binomial dis
tribution with parameters n and p, then 

VarŒJ � D np.1 � p/: (19.8) 

Proof. From the definition of the binomial distribution, we can think of J as being 
the number of “heads” when you flip n mutually independent coins, each of which 
is “heads” with probability p. Thus J can be expressed as the sum of n mutually 
independent indicator variables Ji where 

PrŒJi D 1� D p 

for 1 � i � n. From Lemma 19.1.5, we know that 

VarŒJi � D p.1 � p/: 

By Theorem 19.1.9, this means that 

nX 
VarŒJ � D VarŒJi � D np.1 � p/: � 

iD1 

For example, suppose we flip n mutually independent2 fair coins. Let R be the 
number of heads. Then Theorem 19.1.9 tells us that � �� � 

1 1 n
VarŒR� D n 1 � D : 

2 2 4 

Hence, p
n 

�R D : 
2 

This value is small compared with 

n
ExŒR� D ; 

2 

which should not be surprising since we already knew from Section 17.5 that R is 
unlikely to stray very far from its mean. 

2Actually, we only need to assume pairwise independence for this to be true using Theorem 19.1.9. 
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19.2 Markov’s Theorem 

The variance of a random variable gives us a rough idea of the amount by which a 
random variable is likely to deviate from its mean. But it does not directly give us 
specific bounds on the probability that the deviation exceeds a specified threshold. 
To obtain such specific bounds, we’ll need to work a little harder. 

In this section, we derive a famous result known as Markov’s Theorem that gives 
an upper bound on the probability that a random variable exceeds a specified thresh
old. In the next section, we give a similar but stronger result known as Chebyshev’s 
Theorem. The difference between these results is that Markov’s Theorem depends 
only on the mean of the random variable, whereas Chebyshev’s Theorem makes 
use of the mean and the variance. Basically, the more you know about a random 
variable, the better bounds you can derive on the probability that it deviates from 
its mean. 

19.2.1 A Motivating Example 

The idea behind Markov’s Theorem can be explained with a simple example involv
ing intelligence quotients, or IQs. This quantity was devised so that the average IQ 
measurement would be 100. From this fact alone we can conclude that at most 1/3 
the population can have an IQ of 300 or more, because if more than a third had an 
IQ of at least 300, then the average IQ would have to be more than .1=3/300 D 100, 
contradicting the fact that the average is 100. So the probability that a randomly 
chosen person has an IQ of 300 or more is at most 1/3. Of course this is not a very 
strong conclusion since no IQ over 200 has ever been recorded. 

By the same logic, we can also conclude that at most 2/3 of the population can 
have an IQ of 150 or more. IQ’s over 150 have certainly been recorded, although a 
much smaller fraction than 2/3 of the population actually has an IQ that high. 

Although these conclusions about IQ are weak, they are actually the strongest 
general conclusions that can be reached about a random variable using only the fact 
that it is nonnegative and its mean is 100. For example, if we choose a random 
variable equal to 300 with probability 1/3, and 0 with probability 2/3, then its mean 
is 100, and the probability of a value of 300 or more really is 1/3. So we can’t hope 
to get a better upper bound based solely on this limited amount of information. 

Markov’s Theorem characterizes the bounds that can be achieved with this kind 
of analysis 
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19.2.2 The Theorem 

Theorem 19.2.1 (Markov’s Theorem). If R is a nonnegative random variable, then 
for all x > 0, 

ExŒR� 
PrŒR � x� � : 

x 

Proof. For any x > 0 X 
ExŒR� D y PrŒR D y� 

y2range.R/ X 
� y PrŒR D y� (because R � 0) 

y�x; 
y2range.R/ X 
� x PrŒR D y� 

y�x; 
y2range.R/ X 
D x PrŒR D y� 

y�x; 
y2range.R/ 

D x PrŒR � x�: (19.9) 

Hence, 
ExŒR� 

PrŒR � x� � : � 
x 

Corollary 19.2.2. If R is a nonnegative random variable, then for all c � 1, � � 1
Pr R � c � ExŒR� � : (19.10) 

c 

Proof. Set x D c ExŒR� in Theorem 19.2.1. � 

As an example, suppose we flip 100 fair coins and use Markov’s Theorem to 
compute the probability of getting all heads: 

ExŒheads� 50 1
PrŒheads � 100� � D D : 

100 100 2 

If the coins are mutually independent, then the actual probability of getting all 
heads is a minuscule 1 in 2100 . In this case, Markov’s Theorem looks very weak. 
However, in applying Markov’s Theorem, we made no independence assumptions. 
In fact, if all the coins are glued together, then probability of throwing all heads is 
exactly 1=2. In this nasty case, Markov’s Theorem is actually tight! 
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The Chinese Appetizer Problem 

Suppose that n people are seated at a circular table and that each person has an 
appetizer in front of them on a rotating Chinese banquet tray. Just as everyone 
is about to dig in, some joker spins the tray so that each person receives a random 
appetizer. We are interested in the number of people R that get their same appetizer 
as before, assuming that the n appetizers are all different. 

Each person gets their original appetizer with probability 1=n. Hence, by Lin
earity of Expectation, 

1
ExŒR� D n � D 1: 

n 
What is the probability that all n people get their original appetizer back? Markov’s 
Theorem tells us that 

ExŒR� 1
PrŒR D n� D PrŒR � n� � D : 

n n 

In fact, this bound is tight sine everyone gets their original appetizers back if and 
only if the rotating tray returns to its original configuration, which happens with 
probability 1=n. 

The Chinese Appetizer problem is similar to the Hat Check problem that we 
studied in Section 18.3.2, except that no distribution was specified in the Hat Check 
problem—we were told only that each person gets their correct hat back with prob
ability 1=n. If the hats are scrambled according to uniformly random permutations, 
then the probability that everyone gets the right hat back is 1=nŠ, which is much 
less than the 1=n upper bound given by Markov’s Theorem. So, in this case, the 
bound given by Markov’s Theorem is not close to the actual probability. 

What is the probability that at least two people get their right hats back? Markov’s 
Theorem tells us that 

ExŒR� 1
PrŒR � 2� � D : 

2 2 
In this case, Markov’s Theorem is not too far off from the right answer if the hats 
are distributed according to a random permutation3 but it is not very close to the 
correct answer 1=n for the case when the hats are distributed as in the Chinese 
Appetizer problem. 

Why R Must be Nonnegative 

Remember that Markov’s Theorem applies only to nonnegative random variables! 
Indeed, the theorem is false if this restriction is removed. For example, let R be -10 

3Proving this requires some effort. 
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with probability 1=2 and 10 with probability 1=2. Then 

1 1
ExŒR� D �10 � C 10 � D 0: 

2 2 

Suppose that we now tried to compute PrŒR � 5� using Markov’s Theorem: 

ExŒR� 0
PrŒR � 5� � D D 0: 

5 5 

This is the wrong answer! Obviously, R is at least 5 with probability 1=2. 
On the other hand, we can still apply Markov’s Theorem indirectly to derive a 

bound on the probability that an arbitrary variable like R is 5 or more. For example, 
given any random variable, R with expectation 0 and values � �10, we can con
clude that PrŒR � 5� � 2=3. To prove this fact, we define T WWDR C 10. Then T is 
a nonnegative random variable with expectation ExŒR C 10� D ExŒR� C 10 D 10, 
so Markov’s Theorem applies and tells us that PrŒT � 15� � 10=15 D 2=3. But 
T � 15 iff R � 5, so PrŒR � 5� � 2=3, as claimed. 

19.2.3 Markov’s Theorem for Bounded Variables 

Suppose we learn that the average IQ among MIT students is 150 (which is not 
true, by the way). What can we say about the probability that an MIT student has 
an IQ of more than 200? Markov’s Theorem immediately tells us that no more than 
150=200 or 3=4 of the students can have such a high IQ. That’s because if R is the 
IQ of a random MIT student, then 

ExŒR� 150 3
PrŒR > 200� � D D : 

200 200 4 

But let’s also suppose that no MIT student has an IQ less than 100 (which may 
be true). This means that if we let T WWD R � 100, then T is nonnegative and 
ExŒT � D 50, so we can apply Markov’s Theorem to T and conclude: 

ExŒT � 50 1
PrŒR > 200� D PrŒT > 100� � D D : 

100 100 2 

So only half, not 3/4, of the students can be as amazing as they think they are. A 
bit of a relief! 

More generally, we can get better bounds applying Markov’s Theorem to R � l 
instead of R for any lower bound l on R, even when l is negative. 

Theorem 19.2.3. Let R be a random variable for which R � l for some l 2 R. 
Then for all x � l , 

ExŒR� � l
PrŒR � x� � : 

x � l 
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Proof. Define 
T WWDR � l: 

Then T is a nonnegative random variable with mean 

ExŒT � D ExŒR � l � D ExŒR� � l: 

Hence, Markov’s Theorem implies that 

ExŒT � 
PrŒT � x � l � � 

x � l 
ExŒR� � l 

:D 
x � l 

The result then follows from the fact that 

PrŒR � x� D PrŒR � l � x � l � 

D PrŒT � x � l �: � 

19.2.4 Deviations Below the Mean 

Markov’s Theorem says that a random variable is unlikely to greatly exceed the 
mean. Correspondingly, there is a variation of Markov’s Theorem that says a ran
dom variable is unlikely to be much smaller than its mean. 

Theorem 19.2.4. Let u 2 R and let R be a random variable such that R � u. 
Then for all x < u, 

u � ExŒR� 
PrŒR � x� � : 

u � x 

Proof. The proof is similar to that of Theorem 19.2.3. Define 

S WWD u �R: 

Then S is a nonnegative random variable with mean 

ExŒS� D ExŒu �R� D u � ExŒR�: 

Hence, Markov’s Theorem implies that 

PrŒS � u � x� �	
ExŒS� 

D 
u � ExŒR� 

: 
u � u �x x 

The result then follows from the fact that 

PrŒR � x� D PrŒu � S � x� D PrŒS � u � x�: � 
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For example, suppose that the class average on a midterm was 75/100. What 
fraction of the class scored below 50? 

There is not enough information here to answer the question exactly, but Theo
rem 19.2.4 gives an upper bound. Let R be the score of a random student. Since 
100 is the highest possible score, we can set u D 100 to meet the condition in the 
theorem that R � u. Applying Theorem 19.2.4, we find: 

100 � 75 1
PrŒR � 50� � D : 

100 � 50 2 

That is, at most half of the class scored 50 or worse. This makes sense; if more 
than half of the class scored 50 or worse, then the class average could not be 75, 
even if everyone else scored 100. As with Markov’s Theorem, Theorem 19.2.4 
often gives weak results. In fact, based on the data given, the entire class could 
have scored above 50. 

19.2.5 Using Markov’s Theorem to Analyze Non-Random Events 

In the previous example, we used a theorem about a random variable to conclude 
facts about non-random data. For example, we concluded that if the average score 
on a test is 75, then at most 1=2 the class scored 50 or worse. There is no random
ness in this problem, so how can we apply Theorem 19.2.4 to reach this conclusion? 

The explanation is not difficult. For any set of scores S D fs1; s2; : : : ; sng, we 
introduce a random variable R such that 

(# of students with score si )PrŒR D si � D : 
n 

We then use Theorem 19.2.4 to conclude that PrŒR � 50� � 1=2. To see why 
this means (with certainty) that at most 1=2 of the students scored 50 or less, we 
observe that X 

PrŒR � 50� D PrŒR D si � 
si �50 X (# of students with score si )

D 
n 

si �50 

1 
D (# of students with score 50 or less): 

n 

So, if PrŒR � 50� � 1=2, then the number of students with score 50 or less is at 
most n=2. 
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19.3 Chebyshev’s Theorem 

As we have just seen, Markov’s Theorem can be extended by applying it to func
tions of a random variable R such as R � l and u � R. Even stronger results can 
be obtained by applying Markov’s Theorem to powers of R. 

Lemma 19.3.1. For any random variable R, ˛ 2 RC, and x > 0, 

ExŒjRj˛�
PrŒjRj � x� � :

˛x

Proof. The event jRj x is the same as the event jRj˛ x˛ . Since jRj˛ is� � 

nonnegative, the result follows immediately from Markov’s Theorem. � 

Similarly, 

ExŒ.R � ExŒR�/˛�
PrŒjR � ExŒR�j � x� � : (19.11)

˛x

The restatement of Equation 19.11 for ˛ D 2 is known as Chebyshev’s Theorem. 

Theorem 19.3.2 (Chebyshev). Let R be a random variable and x 2 RC. Then 

VarŒR� 
PrŒjR � ExŒR�j � x� � :

2x

Proof. Define 
T WWDR � ExŒR�: 

Then � � 
Pr jR � ExŒR�j � x D PrŒjT j � x� 

D PrŒT 2 
� x 2� 

� 
ExŒT 2� 

x2 
(by Markov’s Theorem) 

ExŒ.R � ExŒR�/2� 
D 

x2 

D 
VarŒR� 

x2 
: (by Definition 19.1.1) � 

Corollary 19.3.3. Let R be a random variable, and let c be a positive real number. 

1
PrŒjR � ExŒR�j � c�R� � :

2c
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Proof. Substituting x D c�R in Chebyshev’s Theorem gives:


VarŒR� �2 1
PrŒjR � ExŒR�j � c�R� � R : � 

.c�R/2 
D

.c�R/2 
D

c2 

As an example, suppose that, in addition to the national average IQ being 100, 
we also know the standard deviation of IQ’s is 10. How rare is an IQ of 300 or 
more? 

Let the random variable R be the IQ of a random person. So we are supposing 
that ExŒR� D 100, �R D 10, and R is nonnegative. We want to compute PrŒR � 
300�. 

We have already seen that Markov’s Theorem 19.2.1 gives a coarse bound, namely, 

1
PrŒR � 300� � : 

3 

Now we apply Corollary 19.3.3 to the same problem: � � 1
PrŒR � 300� � Pr jR � 100j � 20�R �

400
: (19.12) 

So Chebyshev’s Theorem implies that at most one person in four hundred has 
an IQ of 300 or more. We have gotten a much tighter bound using the additional 
information, namely the standard deviation of R, than we could get knowing only 
the expectation. 

More generally, Corollary 19.3.3 tells us that a random variable is never likely 
to stray by more than a few standard deviations from its mean. For example, plug
ging c D 3 into Corollary 19.3.3, we find that the probability that a random variable 
strays from the mean by more than 3� is at most 1=9. 

This fact has a nice pictorial characterization for pdf’s with a “bell-curve” shape; 
namely, the width of the bell is O.�/, as shown in Figure 19.1. 

19.3.1 Bounds on One-Sided Errors 

Corollary 19.3.3 gives bounds on the probability of deviating from the mean in 
either direction. If you only care about deviations in one direction, as was the case 
in the IQ example, then slightly better bounds can be obtained. 

Theorem 19.3.4. For any random variable R and any c > 0, 

1
PrŒR � ExŒR� � c�R� �

c2 C 1 

and 
1

PrŒR � ExŒR� � �c�R� � : 
c2 C 1 
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mean

O.¢/

Figure 19.1 If the pdf of a random variable is “bell-shaped,” then the width of the 
bell is O.�/. 

The proof of Theorem 19.3.4 is trickier than the proof of Chebyshev’s Theorem 
and we will not give the details here. Nor will we prove the fact that the bounds in 
Theorem 19.3.4 are the best bounds that you can obtain if you know only the mean 
and standard deviation of the random variable R. 

Returning to the IQ example, Theorem 19.3.4 tells us that 

1
PrŒR � 300� � PrŒR � 100 � 20�R� � ; 

401 

which is a very slight improvement over Equation 19.12. 
As another example, suppose we give an exam. What fraction of the class can 

score more than 2 standard deviations from the average? If R is the score of a 
random student, then 

1
PrŒjR � ExŒR�j � 2�R� � : 

4 
For one-sided error, the fraction that could be 2 standard deviations or more above 
the average is at most 

1 1 
:D

22 C 1 5 

This results holds no matter what the test scores are, and is again a deterministic 
fact derived using probabilistic tools. 
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19.4 Bounds for Sums of Random Variables 

If all you know about a random variable is its mean and variance, then Cheby
shev’s Theorem is the best you can do when it comes to bounding the probabil
ity that the random variable deviates from its mean. In some cases, however, we 
know more—for example, that the random variable has a binomial distribution— 
and then it is possible to prove much stronger bounds. Instead of polynomially 
small bounds such as 1=c2, we can sometimes even obtain exponentially small 
bounds such as 1=ec . As we will soon discover, this is the case whenever the ran
dom variable T is the sum of n mutually independent random variables T1, T2, . . . , 
Tn where 0 � Ti � 1. A random variable with a binomial distribution is just one 
of many examples of such a T . Here is another. 

19.4.1 A Motivating Example 

Fussbook is a new social networking site oriented toward unpleasant people. 
Like all major web services, Fussbook has a load balancing problem. Specif

ically, Fussbook receives 24,000 forum posts every 10 minutes. Each post is as
signed to one of m computers for processing, and each computer works sequen
tially through its assigned tasks. Processing an average post takes a computer 1=4 
second. Some posts, such as pointless grammar critiques and snide witticisms, are 
easier. But the most protracted harangues require 1 full second. 

Balancing the work load across the m computers is vital; if any computer is as
signed more than 10 minutes of work in a 10-minute interval, then that computer is 
overloaded and system performance suffers. That would be bad, because Fussbook 
users are not a tolerant bunch. 

An early idea was to assign each computer an alphabetic range of forum topics. 
(“That oughta work!”, one programmer said.) But after the computer handling the 
“privacy” and “preferred text editor” threads melted, the drawback of an ad hoc 
approach was clear: there are no guarantees. 

If the length of every task were known in advance, then finding a balanced dis
tribution would be a kind of “bin packing” problem. Such problems are hard to 
solve exactly, though approximation algorithms can come close. But in this case, 
task lengths are not known in advance, which is typical for workload problems in 
the real world. 

So the load balancing problem seems sort of hopeless, because there is no data 
available to guide decisions. Heck, we might as well assign tasks to computers at 
random! 

As it turns out, random assignment not only balances load reasonably well, but 
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also permits provable performance guarantees in place of “That oughta work!” as
sertions. In general, a randomized approach to a problem is worth considering when 
a deterministic solution is hard to compute or requires unavailable information. 

Some arithmetic shows that Fussbook’s traffic is sufficient to keep m D 10 com
puters running at 100% capacity with perfect load balancing. Surely, more than 10 
servers are needed to cope with random fluctuations in task length and imperfect 
load balance. But how many is enough? 11? 15? 20? 100? We’ll answer that 
question with a new mathematical tool. 

19.4.2 The Chernoff Bound 

The Chernoff4 bound is a hammer that you can use to nail a great many problems. 
Roughly, the Chernoff bound says that certain random variables are very unlikely 
to significantly exceed their expectation. For example, if the expected load on 
a computer is just a bit below its capacity, then that computer is unlikely to be 
overloaded, provided the conditions of the Chernoff bound are satisfied. 

More precisely, the Chernoff Bound says that the sum of lots of little, indepen
dent random variables is unlikely to significantly exceed the mean of the sum. The 
Markov and Chebyshev bounds lead to the same kind of conclusion but typically 
provide much weaker bounds. In particular, the Markov and Chebyshev bounds are 
polynomial, while the Chernoff bound is exponential. 

Here is the theorem. The proof will come later in Section 19.4.3. 

Theorem 19.4.1 (Chernoff Bound). Let T1; : : : Tn be mutually independent ran
dom variables such that 0 � Ti � 1 for all i . Let T D T1 C � � � C Tn. Then for all 
c � 1, 

PrŒT � c ExŒT �� � e�k ExŒT � (19.13) 

where k D c ln.c/ � c C 1. 

The Chernoff bound applies only to distributions of sums of independent random 
variables that take on values in the interval Œ0; 1�. The binomial distribution is 
of course such a distribution, but there are lots of other distributions because the 
Chernoff bound allows the variables in the sum to have differing, arbitrary, and 
even unknown distributions over the range Œ0; 1�. Furthermore, there is no direct 
dependence on the number of random variables in the sum or their expectations. In 
short, the Chernoff bound gives strong results for lots of problems based on little 
information—no wonder it is widely used! 

4Yes, this is the same Chernoff who figured out how to beat the state lottery. So you might want 
to pay attention—this guy knows a thing or two. 
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More Examples 

The Chernoff bound is pretty easy to apply, though the details can be daunting at 
first. Let’s walk through a simple example to get the hang of it. 

What is the probability that the number of heads that come up in 1000 indepen
dent tosses of a fair coin exceeds the expectation by 20% or more? Let Ti be an 
indicator variable for the event that the i -th coin is heads. Then the total number of 
heads is 

T D T1 C � � � C T1000: 

The Chernoff bound requires that the random variables Ti be mutually independent 
and take on values in the range Œ0; 1�. Both conditions hold here. In fact, this 
example is similar to many applications of the Chernoff bound in that every Ti is 
either 0 or 1, since they’re indicators. 

The goal is to bound the probability that the number of heads exceeds its expec
tation by 20% or more; that is, to bound PrŒT � c ExŒT �� where c = 1:2. To that 
end, we compute k as defined in the theorem: 

k D c ln.c/ � c C 1 D 0:0187 : : : : 

Plugging this value into the Chernoff bound gives: 

Pr 
� 
T � 1:2 ExŒT � 

� 
� e�k ExŒT � 

D e�.0:0187::: /�500 

< 0:0000834: 

So the probability of getting 20% or more extra heads on 1000 coins is less than 1 
in 10,000.5 

The bound becomes much stronger as the number of coins increases, because 
the expected number of heads appears in the exponent of the upper bound. For 
example, the probability of getting at least 20% extra heads on a million coins is at 
most 

e�.0:0187::: /�500000 < e�9392 

which is pretty darn small. 
Alternatively, the bound also becomes stronger for larger deviations. For exam

ple, suppose we’re interested in the odds of getting 30% or more extra heads in 
1000 tosses, rather than 20%. In that case, c D 1:3 instead of 1:2. Consequently, 
the parameter k rises from 0:0187 to about 0:0410, which may seem insignificant. 

5Since we are analyzing a binomial distribution here, we can get somewhat better bounds using 
the methods from Section 17.5, but it is much easier to use the Chernoff bounds, and they provide 
results that are nearly as good. 



519 

“mcs-ftl” — 2010/9/8 — 0:40 — page 519 — #525


19.4. Bounds for Sums of Random Variables 

But because k appears in the exponent of the upper bound, the final probability 
decreases from around 1 in 10,000 to about 1 in a billion! 

Pick-4 

Pick-4 is a lottery game where you pick a 4-digit number between 0000 and 9999. 
If your number comes up in a random drawing, then you win $5,000. Your chance 
of winning is 1 in 10,000. And if 10 million people play, then the expected number 
of winners is 1000. The lottery operator’s nightmare is that the number of winners 
is much greater; say, 2000 or more. What is the probability that will happen? 

Let Ti be an indicator for the event that the i -th player wins. Then T D T1 C 

� � �CTn is the total number of winners. If we assume6 that the players’ picks and the 
winning number are random, independent and uniform, then the indicators Ti are 
independent, as required by the Chernoff bound. 

Since 2000 winners would be twice the expected number, we choose c D 2, 
compute k D c ln.c/ � c C 1 D 0:386 : : : , and plug these values into the Chernoff 
bound: � � 

PrŒT � 2000� D Pr T � 2 ExŒT � 

e�k ExŒT � 
�

D e�.0:386::: /�1000 

< e�386: 

So there is almost no chance that the lottery operator pays out double. In fact, the 
number of winners won’t even be 10% higher than expected very often. To prove 
that, let c D 1:1, compute k D c ln.c/ � c C 1 D 0:00484 : : : , and plug in again: � � 

Pr T � 1:1 ExŒT � � e�k ExŒT � 

D e�.0:00484/�1000 

< 0:01: 

So the Pick-4 lottery may be exciting for the players, but the lottery operator has 
little doubt about the outcome! 

Randomized Load Balancing 

Now let’s return to Fussbook and its load balancing problem. Specifically, we need 
to determine how many machines suffice to ensure that no server is overloaded; 

6As we noted in Chapter 18, human choices are often not uniform and they can be highly depen
dent. For example, lots of people will pick an important date. So the lottery folks should not get 
too much comfort from the analysis that follows, unless they assign random 4-digit numbers to each 
player. 
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that is, assigned to do more than 10 minutes of work in a 10-minute interval. 
To begin, let’s find the probability that the first server is overloaded. Let Ti be the 

number of seconds that the first server spends on the i -th task. So Ti is zero if the 
task is assigned to another machine, and otherwise Ti is the length of the task. Then P
T D i

n 
D1 Ti is the total length of tasks assigned to the server, where n D 24;000. 

We need an upper bound on PrŒT � 600�; that is, the probability that the first server 
is assigned more than 600 seconds (or, equivalently, 10 minutes) of work. 

The Chernoff bound is applicable only if the Ti are mutually independent and 
take on values in the range Œ0; 1�. The first condition is satisfied if we assume that 
task lengths and assignments are independent. And the second condition is satisfied 
because processing even the most interminable harangue takes at most 1 second. 

In all, there are 24,000 tasks, each with an expected length of 1/4 second. Since 
tasks are assigned to computers at random, the expected load on the first server is: 

24;000 tasks � 1=4 second per task 
ExŒT � D

m machines 
D 6000=m seconds: (19.14) 

For example, if there are m D 10 machines, then the expected load on the first 
server is 600 seconds, which is 100% of its capacity. 

Now we can use the Chernoff bound to upper bound the probability that the first 
server is overloaded: h i� � m

Pr T � 600 D Pr T � ExŒT � 
10� � 

D Pr T � c ExŒT � 

� e�.c ln.c/�cC1/�6000=m; 

where c D m=10. The first equality follows from Equation 19.14. 
The probability that some server is overloaded is at most m times the probability 

that the first server is overloaded by the Sum Rule in Section 14.4.2. So 
mX 

PrŒsome server is overloaded� � PrŒserver i is overloaded� 
iD1 

D m PrŒthe first server is overloaded� 

me�.c ln.c/�cC1/�6000=m;�

where c D m=10. Some values of this upper bound are tabulated below: 

m D 11 W 0:784 : : : 
m D 12 W 0:000999 : : : 
m D 13 W 0:0000000760 : : : 
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These values suggest that a system with m D 11 machines might suffer immediate 
overload, m D 12 machines could fail in a few days, but m D 13 should be fine for 
a century or two! 

19.4.3 Proof of the Chernoff Bound 

The proof of the Chernoff bound is somewhat involved. Heck, even Chernoff didn’t 
come up with it! His friend, Herman Rubin, showed him the argument. Thinking 
the bound not very significant, Chernoff did not credit Rubin in print. He felt pretty 
bad when it became famous!7 

Here is the theorem again, for reference: 

Theorem 19.4.2 (Chernoff Bound). Let T1; : : : ; Tn be mutually independent ran
dom variables such that 0 � Ti � 1 for all i . Let T D T1 C � � � C Tn. Then for all 
c � 1, 

PrŒT � c ExŒT �� � e�k ExŒT � (19.13) 

where k D c ln.c/ � c C 1. 

Proof. For clarity, we’ll go through the proof “top down”; that is, we’ll use facts 
that are proved immediately afterward. 

The key step is to exponentiate both sides of the inequality T � c ExŒT � and 

then apply the Markov bound: 

PrŒT � c ExŒT �� D PrŒcT 
� c c ExŒT �� 

ExŒcT � 
� 

cc ExŒT � 
(by Markov) 

.c�1/ ExŒT � e
� 

cc ExŒT � 

D e�.c ln.c/�cC1/ ExŒT �: 

In the third step, the numerator is rewritten using the inequality 

ExŒcT e .c�1/ ExŒT � � �

which is proved below in Lemma 19.4.3. The final step is simplification, using the 
fact that cc is equal to ec ln.c/. � 

7See “A Conversation with Herman Chernoff,” Statistical Science 1996, Vol. 11, No. 4, pp 335– 
350. 
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Algebra aside, there is a brilliant idea in this proof: in this context, exponenti
ating somehow supercharges the Markov bound. This is not true in general! One 
unfortunate side-effect is that we have to bound some nasty expectations involving 
exponentials in order to complete the proof. This is done in the two lemmas below, 
where variables take on values as in Theorem 19.4.1. 

Lemma 19.4.3. 
ExŒcT � � e .c�1/ ExŒT �: 

Proof. 

ExŒcT � D ExŒcT1C���CTn � 

D ExŒcT1 � � � c Tn � 

D ExŒcT1 � � � �ExŒcTn � 

�
.c�1/ ExŒT1� 

� � �
.c�1/ ExŒTn� e e 

D e .c�1/.ExŒT1�C���CExŒTn�/ 

D e .c�1/ ExŒT1C���CTn� 

D
.c�1/ ExŒT �e : 

The first step uses the definition of T , and the second is just algebra. The third 
step uses the fact that the expectation of a product of independent random variables 
is the product of the expectations. This is where the requirement that the Ti be 
independent is used. Then we bound each term using the inequality 

ExŒcTi � � e .c�1/ ExŒTi �; 

which is proved in Lemma 19.4.4. The last steps are simplifications using algebra 
and linearity of expectation. � 

Lemma 19.4.4. 
ExŒcTi � � e .c�1/ ExŒTi � 

Proof. All summations below range over values v taken by the random variable Ti , 



523 

“mcs-ftl” — 2010/9/8 — 0:40 — page 523 — #529


19.5. Mutually Independent Events 

which are all required to be in the interval Œ0; 1�. X 
ExŒcTi � D c v PrŒTi D v�


v
X 
� .1 C .c � 1/v/ PrŒTi D v� 

vX 
D PrŒTi D v� C .c � 1/v PrŒTi D v� 

vX X 
D PrŒTi D v� C .c � 1/v PrŒTi D v� 

v X 
D 1 C .c � 1/ v PrŒTi D v� 

v 

D 1 C .c � 1/ ExŒTi � 
.c�1/ ExŒTi �� e : 

The first step uses the definition of expectation. The second step relies on the 
inequality cv � 1 C .c �1/v, which holds for all v in Œ0; 1� and c � 1. This follows 
from the general principle that a convex function, namely cv, is less than the linear 
function, 1 C .c � 1/v, between their points of intersection, namely v D 0 and 1. 
This inequality is why the variables Ti are restricted to the interval Œ0; 1�. We then 
multiply out inside the summation and split into two sums. The first sum adds the 
probabilities of all possible outcomes, so it is equal to 1. After pulling the constant 
c � 1 out of the second sum, we’re left with the definition of ExŒTi �. The final step 
uses the standard inequality 1 C z � ez , which holds for all z > 0. � 

19.5 Mutually Independent Events 

Suppose that we have a collection of mutually independent events A1, A2, . . . , An, 
and we want to know how many of the events are likely to occur. 

Let Ti be the indicator random variable for Ai and define � � 
pi D PrŒTi D 1� D Pr Ai 

for 1 � i � n. Define 
T D T1 C T2 C � � � C Tn 

to be the number of events that occur. 
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We know from Linearity of Expectation that 

ExŒT � D ExŒT1� C ExŒT2� C � � � C ExŒTn� 
n

D pi : 

This is true even if the events are not independent. 
By Theorem 19.1.9, we also know that 

VarŒT � D VarŒT1� C VarŒT2� C � � � C VarŒTn� 
n

X 
pi .1 � pi /;D 

vuut 

X 
Di 1 

X 
Di 1 

and thus that 
n

�T D pi .1 � pi /: 
iD1 

This is true even if the events are only pairwise independent. 
Markov’s Theorem tells us that for any c > 1, 

1
PrŒT � c ExŒT �� � : 

c 

Chebyshev’s Theorem gives us the stronger result that 

1
PrŒjT � ExŒT �j � c�T � � :

2c

The Chernoff Bound gives us an even stronger result; namely, that for any c > 0, 

PrŒT � ExŒT � � c ExŒT �� � e�.c ln.c/�cC1/ ExŒT �: 

In this case, the probability of exceeding the mean by c ExŒT � decreases as an 
exponentially small function of the deviation. 

By considering the random variable n � T , we can also use the Chernoff Bound 
to prove that the probability that T is much lower than ExŒT � is also exponentially 
small. 



525 

“mcs-ftl” — 2010/9/8 — 0:40 — page 525 — #531


19.5. Mutually Independent Events 

19.5.1 Murphy’s Law 

Suppose we want to know the probability that at least 1 event occurs. If ExŒT � < 1, 
then Markov’s Theorem tells us that 

PrŒT � 1� � ExŒT �: 

On the other hand, if ExŒT � � 1, then we can obtain a lower bound on PrŒT � 1� 
using a result that we call Murphy’s Law8. 

Theorem 19.5.1 (Murphy’s Law). Let A1, A2, . . . , An be mutually independent 
events. Let Ti be the indicator random variable for Ai and define 

T WWD T1 C T C 2 C � � � C Tn 

to be the number of events that occur. Then 

PrŒT D 0� � e� ExŒT �: 

Proof. 

PrŒT D 0� D PrŒA1 ^ A2 ^ � � � ^ An� 
nY 

D PrŒAi � (by independence of Ai ) 
iD1 

nY 
D .1 � PrŒAi �/ 

iD1 

� 

nY 
e� PrŒAi � (since 8x:1 � x � e�x) 

iD1 

D e� 
P n 

iD1 PrŒAi � 

D e� 
Pn 

iD1 ExŒTi � (since Ti is an indicator for Ai ) 

D e� ExŒT � (Linearity of Expectation) � 

For example, given any set of mutually independent events, if you expect 10 of 
them to happen, then at least one of them will happen with probability at least 1 � 
e�10. The probability that none of them happen is at most e�10 < 1=22000. 

So if there are a lot of independent things that can go wrong and their probabil
ities sum to a number much greater than 1, then Theorem 19.5.1 proves that some 
of them surely will go wrong. 

8This is in reference and deference to the famous saying that “If something can go wrong, it will 
go wrong.” 
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This result can help to explain “coincidences,” “miracles,” and crazy events that 
seem to have been very unlikely to happen. Such events do happen, in part, because 
there are so many possible unlikely events that the sum of their probabilities is 
greater than one. For example, someone does win the lottery. 

In fact, if there are 100,000 random tickets in Pick-4, Theorem 19.5.1 says that 
the probability that there is no winner is less than e�10 < 1=22000. More generally, 
there are literally millions of one-in-a-million possible events and so some of them 
will surely occur. 

19.5.2 Another Magic Trick 

Theorem 19.5.1 is surprisingly powerful. In fact, it is so powerful that it can enable 
us to read your mind. Here’s how. 

You choose a secret number n from 1 to 9. Then we randomly shuffle an ordinary 
deck of 52 cards and display the cards one at a time. You watch as we reveal the 
cards and when we reveal the nth card, that card becomes your secret card. If 
the card is an Ace, a 10, or a face card, then you assign that card a value of 1. 
Otherwise, you assign that card a value that is its number. For example, the J ~ gets 
assigned a value v1 D 1 and the 4} gets assigned a value v1 D 4. You do all of 
this in your mind so that we can’t tell when the nth card shows up. 

We keep revealing the cards, and when the (n C v1)th card shows up, that card 
becomes your new secret card. You compute its value v2 using the same scheme 
as for v1. For example, if your new secret card is the 10|, then v2 D 1. The 
.n C v1 C v2/th card will then become your next secret card, and so forth. 

We proceed in this fashion until all 52 cards have been revealed, whereupon we 
read your mind by predicting your last secret card! How is this possible? 

For the purposes of illustration, suppose that your secret number was n D 3 and 
the deck consisted of the 11 cards: 

3} 5� 2} 3| 10| Q} 3~ 7� 6| 4} 2~: 

Then your secret cards would be 

2}; 10|; Q}; 3~; 4} 

since v1 D 2, v2 D 1, v3 D 1, v4 D 3, and v5 D 4. In this example, your last 
secret card is the 4}. 

To make the trick work, we follow the same rules as you, except that we start 
with n D 1. With the 11-card deck shown above, our secret cards would be 

3}; 3|; 3~; 4}: 
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We have the same last secret card as you do! That is not a coincidence. In fact, this 
is how we predict your last card—we just guess that it is the same as our last card. 
And, we will be right with probability greater than 90%. 

To see why the trick is likely to work, you need to notice that if we ever share a 
secret card, then we will surely have the same last secret card. That’s because we 
will perform exactly the same steps as the cards are revealed. 

Each time we get a new secret card, there is always a chance that it was one of 
your secret cards. For any given step, the chance of a match is small but we get a 
lot of chances. In fact, the number of chances will typically outweigh the inverse of 
the probability of a match on any given step and so, at least informally, Murphy’s 
Law suggests that we are likely to eventually get a match, whereupon we can read 
your mind. 

The details of the proof are complicated and we will not present them here. One 
of the main complications is that when you are revealing cards from a deck without 
replacement, the probability of getting a match on a given step is conditional based 
on the cards that have already been revealed. 

19.5.3 The Subprime Mortgage Disaster 

Throughout the last few chapters, we have seen many examples where powerful 
conclusions can be drawn about a collection of events if the events are independent. 
Of course, such conclusions are totally invalid if the events have dependencies. 
Unforeseen dependencies can result in disaster in practice. For example, misguided 
assumptions about the independence of loans (combined with a large amount of 
greed) triggered the global financial meltdown in 2008–2009. 

In what follows, we’ll explain some of what went wrong. You may notice that we 
have changed the names of the key participants. That is not to protect the innocent, 
since innocents are few and far between in this sordid tale. Rather, we changed the 
names to protect ourselves.9 In fact, just to be on the safe side, we’ll forget about 
what really happened here on Earth and instead tell you a fairy tale that took place 
in a land far, far away. 

The central players in our story are the major Wall Street firms, of which Golden 
Scoundrels (commonly referred to as “Golden”) is the biggest and most aggressive. 
Firms such as Golden ostensibly exist to make markets; they purport to create an 
open and orderly market in which buyers and sellers can be brought together and 
through which capitalism can flourish. It all sounds good, but the fees that can be 
had from facilitating transactions in a truly open and orderly market are often just 
not enough to satisfy the ever-increasing need to make more. So the employees at 

9For a much more detailed accounting of these events (and one that does name names), you may 
enjoy reading The Big Short by Michael Lewis. 
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such firms are always trying to figure out a way to create new opportunities to make 
even more money. 

One day, they came up with a whopper. Suppose they bought a collection of 1000 
(say) subprime mortgage loans from all around the country and packaged them up 
into a single entity called a bond. A mortgage loan is a loan to a homeowner using 
the house as collateral; if the homeowner stops paying on the loan (in which case 
the loan is said to be in default), then the owner of the loan takes ownership of the 
house. A mortgage loan is classified as subprime if the homeowner does not have 
a very good credit history. Subprime loans are considered to be more risky than 
prime loans since they are more likely to default. Defaults are bad for everyone; 
the homeowner loses the home and the loan owner gets stuck trying to sell the 
house, which can take years and often results in very high losses. 

Of course, a bond consisting of 1000 subprime loans doesn’t sound very appeal
ing to investors, so to dress it up, Golden sells the bond in tranches. The idea 
behind the tranches is to provide a way to assign losses from defaults. In a typical 
scenario, there would be 10 tranches and they are prioritized from 1 to 10. The 
defaults are assessed against the lowest tranches first. For example, suppose that 
there were 150 defaults in the collection of 1000 loans (an impossibly high number 
of defaults according to Golden). Then the lowest tranche would absorb the first 
100 defaults (effectively wiping them out since all 100 of “their” loans would be 
in default) and the second-lowest tranche would be assigned the next 50 defaults, 
(wiping out half of their investment). The remaining 8 tranches would be doing 
great—none of “their” loans would be in default. 

Because they are taking on more risk, the lower tranches would get more of the 
interest payments. The top tranche would get the lowest rate of return and would 
also be the safest. The lowest tranche would get the most interest, but also be the 
most exposed. 

But how much should you pay for a tranche? Suppose the probability that any 
given loan defaults in a year is 1%. In other words, suppose you expect 10 of the 
1000 loans to default in each year. If the defaults are independent, then we can use 
the Chernoff bound to conclude that the chances of more than 100 defaults (10%) 
in the 1000-loan collection is exceedingly tiny. This means that every tranche but 
the lowest is essentially risk-free. That is excellent news for Golden since they can 
buy 1000 cheap10 subprime loans and then sell the top 9 tranches at premium rates, 
thereby making a large and instant profit on 900 of the 1000 loans. It is like turning 
a bunch of junk into a bunch of gold with a little junk left over. 

There remains the problem of the lowest tranche, which is expected to have 
10 defaults in a pool of 100 loans for a default rate of 10%. This isn’t so good 

10They are subprime loans after all. 
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so the first thing to do is to give the tranche a better sounding name than “lowest 
tranche.” “Mezzanine” tranche sounds much less ominous and so that is what they 
used. 

By the Chernoff bound, the default rate in the Mezzanine tranche is very un
likely to be much greater than 10%, and so the risk of owning this tranche can be 
addressed in part by increasing the interest payments for the tranche by 10%. But 
Golden had an even better idea (whopper number two)—rather than pay the ex
tra 10%, why not collect together a bunch of mezzanine tranches from a bunch of 
bonds and then package them together into a “super bond” and then create tranches 
in the super-bond? The technical name for such a super bond is a collateralized 
debt obligation or CDO. This way, 90% of the mezzanine tranches instantly be
came essentially “risk-free,” or so Golden claimed as they were marketing them. 

The only problem now is getting the pension funds and other big investors to 
buy the CDOs at the same price as if they were AAA-rated “risk-free” bonds. This 
was a little tricky because 1) it was virtually impossible for the buyer to figure out 
exactly what loans they were effectively buying since they were buying a tranche of 
a collection of tranches, and 2) if you could ever figure out what it was, you would 
discover that it was the junk of the junk when it comes to loans. 

The solution was to enlist the help of the big bond-rating agencies: Substandard 
and Prevaricators (S&P) and Mopey’s. If Golden could get AAA ratings11 on their 
tranches, then the pension funds and other big investors would buy them at premium 
rates. 

It turned out to be easier than you might think (or hope) to convince S&P and 
Mopey’s to give high ratings to the CDO tranches. After all, the ratings agencies 
are trying to make money too and they make money by rating bonds. And Golden 
was only going to pay them if their bonds and CDOs got good ratings. And, since 
defaults were assumed to be essentially independent, there was a good argument 
as to why all but the mezzanine tranche of a bond or CDO would be essentially 
risk-free.12 

So the stage is set for Golden to make a bundle of money. Cheap junk loans come 
in the back door and exit as expensive AAA-rated bonds and CDOs out the front 
door. The remaining challenge is to ramp up the new money-making machine. That 

11AAA ratings are the best you can get and are supposed to imply that there is virtually no chance 
of default. 

12The logic gets a little fuzzy when you keep slicing and dicing the tranches—after a few iterations, 
you should be able to conclude that the mezzanine tranche of a CDO is sure to have 100% defaults, but 
it required effort to see what was going on under the covers and effort costs money, and so the ratings 
agencies considered the risk of the mezzanine tranche of one CDO to be the same as the mezzanine 
tranche of any other, even though they could have wildly different probabilities of sustaining large 
numbers of defaults. 
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means creating more (preferably, many, many more) junk loans to fuel the machine. 
This is where Joe enters the scene. Joe is a migrant laborer earning $15,000 

per year. Joe’s credit history is not great (since he has never had a loan or credit 
card) but it is also not bad (since he has never missed a payment on a credit card 
and never defaulted on a loan). In short, Joe is a perfect candidate for a subprime 
mortgage loan on a $750,000 home. 

When Loans-

while he would love to own a $750,000 home, he doesn’t have enough money to pay 
for food, let alone the interest payments on the mortgage. “No problem!” replies 
Loans- -Us. 

R-Us approaches Joe for a home loan,13 Joe dutifully explains that 

2 years and Joe can take out a second loan to cover them during that period. “What 
happens after 2 years?” Joe wants to know. “No problem!” replies Loans-
Joe can refinance—his home will surely be worth more in 2 years. Indeed, Joe can 

R 

R It is Joe’s lucky day. The interest rates are super-low for the first


-Us.


even make money while he enjoys the comforts of his new home. If all goes well, 
he can even ease off on the laborer work, and maybe even by a second home. Joe is 
sold. In fact, millions of Joes are sold and, before long, the subprime loan business 
is booming. 

It turns out that there were a few folks out there who really did their math 
homework when they were in college. They were running hedge funds and, as 
the money-making machine was cranking away, they realized that a disaster was 
looming. They knew that loan defaults are not independent—in fact, they are very 
dependent. Once home values stop rising, or a recession hits, or it comes time for 
Joe to refinance, defaults will occur at much higher rates than projected and the 
CDOs and many tranches of the underlying bonds will become worthless. And 
there is so much money invested in these bonds and CDOs that the economy could 
be ruined. 

Unfortunately, the folks who figured out what was going to happen didn’t alert 
anyone. They didn’t go to the newspapers. They didn’t call the See no Evil Com
mission. They didn’t even call 911. Instead, they worked with Golden to find a new 
way to make even more money—betting against the CDO market. 

If you think a stock is going to decline, you can profit from the decline by bor
rowing the stock and selling it. After the stock declines in value, you buy it back 
and return it to the person that lent it to you. Your profit is the decline in price. This 
process is called shorting the stock. 

So the hedge funds wanted to short the CDOs. Unfortunately, there was no 
established way to borrow a tranche of a CDO. Always looking for a new way to 
make money, the investment houses came up with an even bigger whopper than the 

13Yes, we know it is supposed to go the other way around—Joe is supposed to approach the loan 
company—but these are extraordinary times. 
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CDO—they invented the credit default swap. 
The idea behind the credit default swap is to provide a kind of insurance against 

the event that a bond or CDO suffers a certain number of defaults. Since the hedge 
funds believe that the CDOs were going to have lots of defaults, they want to buy 
the insurance. The trick is to find someone dumb enough to sell the insurance. 
That’s where the world’s largest insurance company, Awful Insurance Group (AIG), 
enters the fray. AIG sells insurance on just about anything and they, too, are looking 
for new ways to make money, so why not sell insurance on CDO defaults? 

Golden has a new business! They buy the CDO insurance from AIG for an 
astonishingly low price (about $2 annually for every $1000 of CDO value) and 
sell it to the hedge funds for a much higher price (about $20 annually for every 
$1000 of CDO value). If a CDO sustains defaults, then AIG needs to pay the value 
of the CDO ($1000 in this hypothetical example) to the hedge funds who own 
the insurance. Until that time, the hedge funds are paying the annual fee for the 
insurance, 90% of which is pocketed by Golden. This is a great business; Golden 
pockets 90% of the money and AIG takes all the risk. The only risk that Golden 
has is if AIG goes down, but AIG is “too big to fail. . . . ” 

Golden’s new credit default swap business is even better than the CDO business. 
The only trouble now is that there are only so many Joes out there who can take out 
subprime loans. This means that there is a hard limit on how many billions Golden 
can make. This challenge led to whopper number four. 

If the hedge funds want to buy insurance and AIG wants to sell it, who really 
cares if there is only one insurance policy per loan or CDO? Indeed, why not just 
sell lots of credit default swaps on the same set of junk CDOs? This way, the profits 
could be unlimited! And so it went. “Synthetic” CDOs were created and soon the 
“insurance” quickly turned into a very high-stakes (and very stupid, at least for 
AIG) bet. The odds were weighted heavily in favor of the folks who did their math 
homework (the hedge funds); the hedge funds had figured out that the failure of 
the CDOs was a virtual certainty, whereas AIG believed that failure was virtually 
impossible. 

Of course, we all know how the story ends. The holders of the CDOs and sub-
prime debt and the sellers of insurance got wiped out, losing hundreds of billions 
of dollars. Since many of these folks were deemed by the Government as “too big 
to fail,” they were bailed out using nearly a trillion dollars of taxpayer money. The 
executives who presided over the disaster were given huge bonuses because, well, 
that’s how it works for executives in the land far, far away. The story also ends well 
for the hedge funds that bought the insurance—they made many, many billions of 
dollars. 

So everyone involved in the disaster ends up very rich. Everyone except Joe, of 
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course. Joe got kicked out of his home and lost his job in the recession. 
Too bad for Joe that it isn’t just a fairy tale. 
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