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Infinite Sets 
So you might be wondering how much is there to say about an infinite set other 
than, well, it has an infinite number of elements. Of course, an infinite set does 
have an infinite number of elements, but it turns out that not all infinite sets have 
the same size—some are bigger than others! And, understanding infinity is not as 
easy as you might think. Some of the toughest questions in mathematics involve 
infinite sets. 

Why should you care? Indeed, isn’t computer science only about finite sets? Not 
exactly. For example, we deal with the set of natural numbers N all the time and it 
is an infinite set. In fact, that is why we have induction: to reason about predicates 
over N. Infinite sets are also important in Part IV of the text when we talk about 
random variables over potentially infinite sample spaces. 

So sit back and open your mind for a few moments while we take a very brief 
look at infinity. 

13.1 Injections, Surjections, and Bijections 

We know from Theorem 7.2.1 that if there is an injection or surjection between two 
finite sets, then we can say something about the relative sizes of the two sets. The 
same is true for infinite sets. In fact, relations are the primary tool for determining 
the relative size of infinite sets. 

Definition 13.1.1. Given any two sets A and B , we say that 

A surj B iff there is a surjection from A to B , 
A inj B iff there is an injection from A to B , 
A bij B iff there is a bijection between A and B , and 
A strict B iff there is a surjection from A to B but there is no 

bijection from B to A. 

Restating Theorem 7.2.1 with this new terminology, we have: 

Theorem 13.1.2. For any pair of finite sets A and B , 

jAj � jBj iff A surj B; 

jAj � jBj iff A inj B; 

jAj D jBj iff A bij B; 

jAj > jBj iff A strict B: 
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Chapter 13 Infinite Sets 

Theorem 13.1.2 suggests a way to generalize size comparisons to infinite sets; 
namely, we can think of the relation surj as an “at least as big” relation between sets, 
even if they are infinite. Similarly, the relation bij can be regarded as a “same size” 
relation between (possibly infinite) sets, and strict can be thought of as a “strictly 
bigger” relation between sets. 

Note that we haven’t, and won’t, define what the size of an infinite set is. The 
definition of infinite “sizes” is cumbersome and technical, and we can get by just 
fine without it. All we need are the “as big as” and “same size” relations, surj 
and bij, between sets. 

But there’s something else to watch out for. We’ve referred to surj as an “as big 
as” relation and bij as a “same size” relation on sets. Most of the “as big as” and 
“same size” properties of surj and bij on finite sets do carry over to infinite sets, 
but some important ones don’t—as we’re about to show. So you have to be careful: 
don’t assume that surj has any particular “as big as” property on infinite sets until 
it’s been proved. 

Let’s begin with some familiar properties of the “as big as” and “same size” 
relations on finite sets that do carry over exactly to infinite sets: 

Theorem 13.1.3. For any sets, A, B , and C , 

1. A surj B and B surj C IMPLIES A surj C . 

2. A bij B and B bij C IMPLIES A bij C . 

3. A bij B IMPLIES B bij A. 

Parts 1 and 2 of Theorem 13.1.3 follow immediately from the fact that composi
tions of surjections are surjections, and likewise for bijections. Part 3 follows from 
the fact that the inverse of a bijection is a bijection. We’ll leave a proof of these 
facts to the problems. 

Another familiar property of finite sets carries over to infinite sets, but this time 
it’s not so obvious: 

Theorem 13.1.4 (Schröder-Bernstein). For any pair of sets A and B , if A surj B 
and B surj A, then A bij B . 

The Schröder-Bernstein Theorem says that if A is at least as big as B and, con
versely, B is at least as big as A, then A is the same size as B . Phrased this way, 
you might be tempted to take this theorem for granted, but that would be a mis
take. For infinite sets A and B , the Schröder-Bernstein Theorem is actually pretty 
technical. Just because there is a surjective function f W A ! B—which need 
not be a bijection—and a surjective function g W B ! A—which also need not 
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be a bijection—it’s not at all clear that there must be a bijection h W A ! B . 
The challenge is to construct h from parts of both f and g. We’ll leave the actual 
construction to the problems. 

13.1.1 Infinity Is Different 

A basic property of finite sets that does not carry over to infinite sets is that adding 
something new makes a set bigger. That is, if A is a finite set and b … A, then 
jA [ fbgj D jAj C 1, and so A and A [ fbg are not the same size. But if A is 
infinite, then these two sets are the same size! 

Theorem 13.1.5. Let A be a set and b A. Then A is infinite iff A bij A [ fbg.…

Proof. Since A is not the same size as A [ fbg when A is finite, we only have to 
show that A [ fbg is the same size as A when A is infinite. 

That is, we have to find a bijection between A [ fbg and A when A is infinite. 
Since A is infinite, it certainly has at least one element; call it a0. Since A is infinite, 
it has at least two elements, and one of them must not be equal to a0; call this new 
element a1. Since A is infinite, it has at least three elements, one of which must 
not equal a0 or a1; call this new element a2. Continuing in this way, we conclude 
that there is an infinite sequence a0, a1, a2, . . . , an, . . . , of different elements of A. 
Now it’s easy to define a bijection f W A [ fbg ! A: 

f .b/ WWD a0; 

f .an/ WWD anC1 for n 2 N; 

f .a/ WWD a for a 2 A � fb; a0; a1; : : : g: � 

13.2 Countable Sets 

13.2.1 Definitions 

A set C is countable iff its elements can be listed in order, that is, the distinct 
elements in C are precisely 

c0; c1; : : : ; cn; : : : : 

This means that if we defined a function f on the nonnegative integers by the rule 
that f .i/ WWD ci , then f would be a bijection from N to C . More formally, 

Definition 13.2.1. A set C is countably infinite iff N bij C . A set is countable iff 
it is finite or countably infinite. 
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Chapter 13 Infinite Sets 

Discrete mathematics is often defined as the mathematics of countable sets and 
so it is probably worth spending a little time understanding what it means to be 
countable and why countable sets are so special. For example, a small modification 
of the proof of Theorem 13.1.5 shows that countably infinite sets are the “smallest” 
infinite sets; namely, if A is any infinite set, then A surj N. 

13.2.2 Unions 

Since adding one new element to an infinite set doesn’t change its size, it’s obvi
ous that neither will adding any finite number of elements. It’s a common mis
take to think that this proves that you can throw in countably infinitely many new 
elements—just because it’s ok to do something any finite number of times doesn’t 
make it ok to do it an infinite number of times. 

For example, suppose that you have two countably infinite sets A D fa0; a1; a2; : : : g
and B D fb0; b1; b2; : : : g. You might try to show that A[B is countable by making 
the following “list” for A [ B: 

a0; a1; a2; : : : ; b0; b1; b2; : : : (13.1) 

But this is not a valid argument because Equation 13.1 is not a list. The key property 
required for listing the elements in a countable set is that for any element in the set, 
you can determine its finite index in the list. For example, ai shows up in position i 
in Equation 13.1, but there is no index in the supposed “list” for any of the bi . 
Hence, Equation 13.1 is not a valid list for the purposes of showing that A [ B is 
countable when A is infinite. Equation 13.1 is only useful when A is finite. 

It turns out you really can add a countably infinite number of new elements to 
a countable set and still wind up with just a countably infinite set, but another 
argument is needed to prove this. 

Theorem 13.2.2. If A and B are countable sets, then so is A [ B . 

Proof. Suppose the list of distinct elements of A is a0, a1, . . . , and the list of B is 
b0, b1, . . . . Then a valid way to list all the elements of A [ B is 

a0; b0; a1; b1; : : : ; an; bn; : : : : (13.2) 

Of course this list will contain duplicates if A and B have elements in common, but 
then deleting all but the first occurrence of each element in Equation 13.2 leaves a 
list of all the distinct elements of A and B . � 

Note that the list in Equation 13.2 does not have the same defect as the purported 
“list” in Equation 13.1, since every item in A [ B has a finite index in the list 
created in Theorem 13.2.2. 
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a0 

a1 

a2 

a3 
::: 

b0 

c0 

c3 

c8 

c15 

b1 

c1 

c2 

c7 

c14 

b2 

c4 

c5 

c6 

c13 

b3 

c9 

c10 

c11 

c12 

: : : 

: : : 

Figure 13.1 A listing of the elements of C D A �B where A D fa0; a1; a2; : : : g
and B D fb0; b1; b2; : : : g are countably infinite sets. For example, c5 D .a1; b2/. 

13.2.3 Cross Products 

Somewhat surprisingly, cross products of countable sets are also countable. At first, 
you might be tempted to think that “infinity times infinity” (whatever that means) 
somehow results in a larger infinity, but this is not the case. 

Theorem 13.2.3. The cross product of two countable sets is countable. 

Proof. Let A and B be any pair of countable sets. To show that C D A �B is also 
countable, we need to find a listing of the elements 

f .a; b/ j a 2 A; b 2 B g: 

There are many such listings. One is shown in Figure 13.1 for the case when A 
and B are both infinite sets. In this listing, .ai ; bj / is the kth element in the list 
for C where 

ai is the i th element in A,


bj is the j th element in B , and


k D max.i; j /2 
C i Cmax.i � j; 0/:


The task of finding a listing when one or both of A and B are finite is left to the 
problems at the end of the chapter. 

� 

13.2.4 Q Is Countable 

Theorem 13.2.3 also has a surprising Corollary; namely that the set of rational 
numbers is countable. 

Corollary 13.2.4. The set of rational numbers Q is countable. 
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Proof. Since Z�Z is countable by Theorem 13.2.3, it suffices to find a surjection f 
from Z � Z to Q. This is easy to to since (

a=b if b ¤ 0 
f .a; b/ D

0 if b D 0 

is one such surjection. � 

At this point, you may be thinking that every set is countable. That is not the 
case. In fact, as we will shortly see, there are many infinite sets that are uncountable, 
including the set of real numbers R. 

13.3 Power Sets Are Strictly Bigger 

It turns out that the ideas behind Russell’s Paradox, which caused so much trouble 
for the early efforts to formulate Set Theory, also lead to a correct and astonishing 
fact discovered by Georg Cantor in the late nineteenth century: infinite sets are not 
all the same size. 

Theorem 13.3.1. For any set A, the power set P.A/ is strictly bigger than A. 

Proof. First of all, P.A/ is as big as A: for example, the partial function f W 
P.A/ ! A where f .fag/ WWD a for a 2 A is a surjection. 

To show that P.A/ is strictly bigger than A, we have to show that if g is a 
function from A to P.A/, then g is not a surjection. So, mimicking Russell’s 
Paradox, define 

Ag WWD f a 2 A j a … g.a/ g: 

Ag is a well-defined subset of A, which means it is a member of P.A/. But Ag 

can’t be in the range of g, because if it were, we would have 

Ag D g.a0/ 

for some a0 2 A. So by definition of Ag , 

a 2 g.a0/ iff a 2 Ag iff a … g.a/ 

for all a 2 A. Now letting a D a0 yields the contradiction 

a0 2 g.a0/ iff a0 … g.a0/: 

So g is not a surjection, because there is an element in the power set of A, namely 
the set Ag , that is not in the range of g. � 
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13.3. Power Sets Are Strictly Bigger 

13.3.1 R Is Uncountable 

To prove that the set of real numbers is uncountable, we will show that there is a 
surjection from R to P.N/ and then apply Theorem 13.3.1 to P.N/. 

Lemma 13.3.2. R surj P.N/. 

Proof. Let A � N be any subset of the natural numbers. Since N is countable, this 
means that A is countable and thus that A D fa0; a1; a2; : : : g. For each i � 0, 
define bin.ai / to be the binary representation of ai . Let xA be the real number 
using only digits 0, 1, 2 as follows: 

xA WWD 0:2 bin.a0/2 bin.a1/2 bin.a2/2 : : : (13.3) 

We can then define a surjection f W R ! P.N/ as follows: (
A if x D xA for some A 2 N; 

f .x/ D
0 otherwise: 

Hence R surj P.N/. � 

Corollary 13.3.3. R is uncountable. 

Proof. By contradiction. Assume R is countable. Then N surj R. By Lemma 13.3.2, 
R surj P.N/. Hence N surj P.N/. This contradicts Theorem 13.3.1 for the case 
when A D N. � 

So the set of rational numbers and the set of natural numbers have the same size, 
but the set of real numbers is strictly larger. In fact, R bij P.N /, but we won’t 
prove that here. 

Is there anything bigger? 

13.3.2 Even Larger Infinities 

There are lots of different sizes of infinite sets. For example, starting with the 
infinite set N of nonnegative integers, we can build the infinite sequence of sets 

N; P.N/; P.P.N//; P.P.P.N///; : : : 

By Theorem 13.3.1, each of these sets is strictly bigger than all the preceding ones. 
But that’s not all, the union of all the sets in the sequence is strictly bigger than each 
set in the sequence. In this way, you can keep going, building still bigger infinities. 
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13.3.3 The Continuum Hypothesis 

Georg Cantor was the mathematician who first developed the theory of infinite sizes 
(because he thought he needed it in his study of Fourier series). Cantor raised the 
question whether there is a set whose size is strictly between the “smallest” infinite 
set, N, and P.N/. He guessed not: 

Cantor’s Continuum Hypothesis. There is no set A such that P.N/ is strictly 
bigger than A and A is strictly bigger than N. 

The Continuum Hypothesis remains an open problem a century later. Its diffi
culty arises from one of the deepest results in modern Set Theory—discovered in 
part by Gödel in the 1930s and Paul Cohen in the 1960s—namely, the ZFC axioms 
are not sufficient to settle the Continuum Hypothesis: there are two collections 
of sets, each obeying the laws of ZFC, and in one collection, the Continuum Hy
pothesis is true, and in the other, it is false. So settling the Continuum Hypothesis 
requires a new understanding of what sets should be to arrive at persuasive new 
axioms that extend ZFC and are strong enough to determine the truth of the Con
tinuum Hypothesis one way or the other. 

13.4 Infinities in Computer Science 

If the romance of different size infinities and continuum hypotheses doesn’t appeal 
to you, not knowing about them is not going to lower your professional abilities 
as a computer scientist. These abstract issues about infinite sets rarely come up in 
mainstream mathematics, and they don’t come up at all in computer science, where 
the focus is generally on countable, and often just finite, sets. In practice, only 
logicians and set theorists have to worry about collections that are too big to be sets. 
In fact, at the end of the 19th century, even the general mathematical community 
doubted the relevance of what they called “Cantor’s paradise” of unfamiliar sets of 
arbitrary infinite size. 

That said, it is worth noting that the proof of Theorem 13.3.1 gives the simplest 
form of what is known as a “diagonal argument.” Diagonal arguments are used 
to prove many fundamental results about the limitations of computation, such as 
the undecidability of the Halting Problem for programs and the inherent, unavoid
able inefficiency (exponential time or worse) of procedures for other computational 
problems. So computer scientists do need to study diagonal arguments in order to 
understand the logical limits of computation. Ad a well-educated computer scien
tist will be comfortable dealing with countable sets, finite as well as infinite. 
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