
12

“mcs-ftl” — 2010/9/8 — 0:40 — page 355 — #361

Generating Functions
Generating Functions are one of the most surprising and useful inventions in Dis
crete Math. Roughly speaking, generating functions transform problems about se
quences into problems about functions. This is great because we’ve got piles of
mathematical machinery for manipulating functions. Thanks to generating func
tions, we can then apply all that machinery to problems about sequences. In this
way, we can use generating functions to solve all sorts of counting problems. They
can also be used to find closed-form expressions for sums and to solve recurrences.
In fact, many of the problems we addressed in Chapters 9–11 can be formulated
and solved using generating functions.

12.1 Definitions and Examples

The ordinary generating function for the sequence1 hg0; g1; g2; g3 : : : i is the power
series:

G.x/ D g0 C g1x C g2x 2
C g3x 3

C � � � :

There are a few other kinds of generating functions in common use, but ordinary
generating functions are enough to illustrate the power of the idea, so we’ll stick to
them and from now on, generating function will mean the ordinary kind.

A generating function is a “formal” power series in the sense that we usually
regard x as a placeholder rather than a number. Only in rare cases will we actually
evaluate a generating function by letting x take a real number value, so we generally
ignore the issue of convergence.

Throughout this chapter, we’ll indicate the correspondence between a sequence
and its generating function with a double-sided arrow as follows:

hg0; g1; g2; g3; : : : i ! g0 C g1x C g2x 2
C g3x 3

C � � � :

For example, here are some sequences and their generating functions:

h0; 0; 0; 0; : : : i ! 0 C 0x C 0x2
C 0x3

C � � � D 0

h1; 0; 0; 0; : : : i ! 1 C 0x C 0x2
C 0x3

C � � � D 1

h3; 2; 1; 0; : : : i ! 3 C 2x C 1x2
C 0x3

C � � � D 3 C 2x C x 2

1In this chapter, we’ll put sequences in angle brackets to more clearly distinguish them from the
many other mathematical expressions floating around.

356

“mcs-ftl” — 2010/9/8 — 0:40 — page 356 — #362

Chapter 12 Generating Functions

The pattern here is simple: the i th term in the sequence (indexing from 0) is the
coefficient of xi in the generating function.

Recall that the sum of an infinite geometric series is:

1
z z :1 C z C 2
C

3
C � � � D

1 � z

This equation does not hold when jzj � 1, but as remarked, we won’t worry about
convergence issues for now. This formula gives closed form generating functions
for a whole range of sequences. For example:

1
h1; 1; 1; 1; : : : i ! 1 C x C x 2

C x 3
C x 4

C � � � D
x1 �

1
h1; �1; 1; �1; : : : i ! 1 � x C x 2

� x 3
C x 4

� � � � D
1 C x

˝ ˛ 1
1; a; a2; a3; : : : ! 1 C ax C a 2 x 2

C a 3 x 3
C � � � D

ax 1 �

1
h1; 0; 1; 0; 1; 0; : : : i ! 1 C x 2

C x 4
C x 6

C x 8
C � � � D

1 � 2x

12.2 Operations on Generating Functions

The magic of generating functions is that we can carry out all sorts of manipulations
on sequences by performing mathematical operations on their associated generating
functions. Let’s experiment with various operations and characterize their effects
in terms of sequences.

12.2.1 Scaling

Multiplying a generating function by a constant scales every term in the associated
sequence by the same constant. For example, we noted above that:

h1; 0; 1; 0; 1; 0; : : : i ! 1 C x 2
C x 4

C x 6
C � � � D

2
:

1 � x

Multiplying the generating function by 2 gives

2
2
D 2 C 2x2

C 2x4
C 2x6

C � � �
x1 �

1

“mcs-ftl” — 2010/9/8 — 0:40 — page 357 — #363

12.2. Operations on Generating Functions 357

which generates the sequence:

h2; 0; 2; 0; 2; 0; : : : i :

Rule 12.2.1 (Scaling Rule). If

hf0; f1; f2; : : : i ! F.x/;

then
hcf0; cf1; cf2; : : : i ! c � F.x/:

The idea behind this rule is that:

hcf0; cf1; cf2; : : : i ! cf0 C cf1x C cf2x 2
C � � �

D c � .f0 C f1x C f2x 2
C � � � /

D cF.x/:

12.2.2 Addition

Adding generating functions corresponds to adding the two sequences term by
term. For example, adding two of our earlier examples gives:

1
h1; 1; 1; 1; 1; 1; : : : i !

x1 �
1

C h1; �1; 1; �1; 1; �1; : : : i !
x1 C

1 1
h2; 0; 2; 0; 2; 0; : : : i !

1 � x
C

1 C x

We’ve now derived two different expressions that both generate the sequence h2; 0; 2; 0; : : : i.
They are, of course, equal:

1	 1 .1 C x/ C .1 � x/ 2
:C D D

21 � x 1 C x .1 � x/.1 C x/ 1 � x

Rule 12.2.2 (Addition Rule). If

hf0; f1; f2; : : : i !

hg0; g1; g2; : : : i !

F .x/

G.x/;

and

then
hf0 C g0; f1 C g1; f2 C g2; : : : i ! F .x/ CG.x/:

358

“mcs-ftl” — 2010/9/8 — 0:40 — page 358 — #364

Chapter 12 Generating Functions

The idea behind this rule is that:

1X
hf0 C g0; f1 C g1; f2 C g2; : : : i ! .fn C gn/xn

nD0 ! !X1 1X
D fnx n

C gnx n

nD0 nD0

D F.x/ CG.x/:

12.2.3 Right Shifting

Let’s start over again with a simple sequence and its generating function:

1
h1; 1; 1; 1; : : : i ! :

1 � x

Now let’s right-shift the sequence by adding k leading zeros:

k zeroes ‚ …„ ƒ
h0; 0; : : : ; 0; 1; 1; 1; : : : i ! x k

C x kC1
C x kC2

C x kC3
C � � �

D x k
� .1 C x C x 2

C x 3
C � � � /

kx
:D

1 � x

Evidently, adding k leading zeros to the sequence corresponds to multiplying the
generating function by xk . This holds true in general.

Rule 12.2.3 (Right-Shift Rule). If hf0; f1; f2; : : : i ! F.x/, then:

k zeroes ‚ …„ ƒ
h0; 0; : : : ; 0; f0; f1; f2; : : : i ! x k

� F.x/:

The idea behind this rule is that:

k zeroes ‚ …„ ƒ
h0; 0; : : : ; 0; f0; f1; f2; : : : i ! f0x k

C f1x kC1
C f2x kC2

C � � �

D x k
� .f0 C f1x C f2x 2

C f3x 3
C � � � /

D x k
� F.x/:

359

“mcs-ftl” — 2010/9/8 — 0:40 — page 359 — #365

12.2. Operations on Generating Functions

12.2.4 Differentiation

What happens if we take the derivative of a generating function? As an exam
ple, let’s differentiate the now-familiar generating function for an infinite sequence
of 1’s:

1 C x C x 2
C x 3

C x 4
C � � � D

1

1 � x� �
IMPLIES

d

dx
.1 C x C x 2

C x 3
C x 4

C � � � / D
d

dx

1

1 � x

IMPLIES 1 C 2x C 3x2
C 4x3

C � � � D
1

.1 � x/2

IMPLIES h1; 2; 3; 4; : : : i !
1

.1 � x/2
: (12.1)

We found a generating function for the sequence h1; 2; 3; 4; : : : i of positive inte
gers!

In general, differentiating a generating function has two effects on the corre
sponding sequence: each term is multiplied by its index and the entire sequence is
shifted left one place.

Rule 12.2.4 (Derivative Rule). If

hf0; f1; f2; f3; : : : i ! F.x/;

then
hf1; 2f2; 3f3; : : : i ! F 0.x/:

The idea behind this rule is that:

hf1; 2f2; 3f3; : : : i ! f1 C 2f2x C 3f3x 2
C � � �

d 2 3
D

dx
.f0 C f1x C f2x C f3x C � � � /

d
D

dx
F .x/:

The Derivative Rule is very useful. In fact, there is frequent, independent need
for each of differentiation’s two effects, multiplying terms by their index and left-
shifting one place. Typically, we want just one effect and must somehow cancel out
the other. For example, let’s try to find the generating function for the sequence of
squares, h0; 1; 4; 9; 16; : : : i. If we could start with the sequence h1; 1; 1; 1; : : : i and
multiply each term by its index two times, then we’d have the desired result:

h0 � 0; 1 � 1; 2 � 2; 3 � 3; : : : i D h0; 1; 4; 9; : : : i :

360

“mcs-ftl” — 2010/9/8 — 0:40 — page 360 — #366

Chapter 12 Generating Functions

A challenge is that differentiation not only multiplies each term by its index, but
also shifts the whole sequence left one place. However, the Right-Shift Rule 12.2.3
tells how to cancel out this unwanted left-shift: multiply the generating function
by x.

Our procedure, therefore, is to begin with the generating function for h1; 1; 1; 1; : : : i,

differentiate, multiply by x, and then differentiate and multiply by x once more.

Then

1
h1; 1; 1; 1; : : : i !

x1 �
d 1 1

Derivative Rule: h1; 2; 3; 4; : : : i !
dx 1 � x

D
.1 � x/2

1 x
Right-shift Rule: h0; 1; 2; 3; : : : i ! x �

.1 � x/2
D

.1 � x/2

d x 1 C x
Derivative Rule: h1; 4; 9; 16; : : : i !

dx .1 � x/2
D

.1 � x/3

Right-shift Rule: h0; 1; 4; 9; : : : i ! x
1 C x x.1 C x/

�
.1 � x/3

D
.1 � x/3

Thus, the generating function for squares is:

x.1 C x/
: (12.2)

.1 � x/3

12.2.5 Products

Rule 12.2.5 (Product Rule). If

ha0; a1; a2; : : : i ! A.x/; and hb0; b1; b2; : : : i ! B.x/;

then
hc0; c1; c2; : : : i ! A.x/ � B.x/;

where
cn WWD a0bn C a1bn�1 C a2bn�2 C � � � C anb0:

To understand this rule, let

1X
C.x/ WWD A.x/ � B.x/ D cnx n:

nD0

361

“mcs-ftl” — 2010/9/8 — 0:40 — page 361 — #367

12.3. Evaluating Sums

We can evaluate the product A.x/ � B.x/ by using a table to identify all the
cross-terms from the product of the sums:

b0x0 b1x1 b2x2 b3x3 : : :

a0x0 a0b0x0 a0b1x1 a0b2x2 a0b3x3 : : :

a1x1 a1b0x1 a1b1x2 a1b2x3 : : :

a2x2 a2b0x2 a2b1x3 : : :

a3x3 a3b0x3 : : :

::: : : :

Notice that all terms involving the same power of x lie on a diagonal. Collecting
these terms together, we find that the coefficient of xn in the product is the sum of
all the terms on the .n C 1/st diagonal, namely,

a0bn C a1bn�1 C a2bn�2 C � � � C anb0: (12.3)

This expression (12.3) may be familiar from a signal processing course; the se
quence hc0; c1; c2; : : : i is called the convolution of sequences ha0; a1; a2; : : : i and
hb0; b1; b2; : : : i.

12.3 Evaluating Sums

The product rule looks complicated. But it is surprisingly useful. For example,
suppose that we set

1
B.x/ D :

1 � x
Then bi D 1 for i � 0 and the nth coefficient of A.x/B.x/ is

nX
a0 � 1 C a1 � 1 C a2 � 1 C � � � C an � 1 D ai :

iD0

In other words, given any sequence ha0; a1; a2; : : : i, we can compute

nX
sn D ai

iD0

362

“mcs-ftl” — 2010/9/8 — 0:40 — page 362 — #368

Chapter 12 Generating Functions

for all n by simply multiplying the sequence’s generating function by 1=.1 � x/.
This is the Summation Rule.

Rule 12.3.1 (Summation Rule). If

ha0; a1; a2; : : : i ! A.x/;

then
A.x/

hs0; s1; s2; : : : i !
1 � x

where
nX

sn D ai for n � 0:
iD0

The Summation Rule sounds powerful, and it is! We know from Chapter 9 that
computing sums is often not easy. But multiplying by 1=.1 � x/ is about as easy as
it gets.

For example, suppose that we want to compute the sum of the first n squares

nX
sn D i2

iD0

and we forgot the method in Chapter 9. All we need to do is compute the generating
function for h0; 1; 4; 9; : : : i and multiply by 1=.1 � x/. We already computed the
generating function for h0; 1; 4; 9; : : : i in Equation 12.2—it is

x.1 C x/
:

.1 � x/3

Hence, the generating function for hs0; s1; s2; : : : i is

x.1 C x/
:

.1 � x/4 P
This means that i

n
D0 i

2 is the coefficient of xn in x.1 C x/=.1 � x/4 .
That was pretty easy, but there is one problem—we have no idea how to deter-

nmine the coefficient of x in x.1 C x/=.1 � x/4! And without that, this whole
endeavor (while magical) would be useless. Fortunately, there is a straightforward
way to produce the sequence of coefficients from a generating function.

363

“mcs-ftl” — 2010/9/8 — 0:40 — page 363 — #369

12.4. Extracting Coefficients

12.4 Extracting Coefficients

12.4.1 Taylor Series

Given a sequence of coefficients hf0; f1; f2; : : : i, computing the generating func
tion F.x/ is easy since

F.x/ D f0 C f1x C f2x 2
C � � � :

To compute the sequence of coefficients from the generating function, we need to
compute the Taylor Series for the generating function.

Rule 12.4.1 (Taylor Series). Let F.x/ be the generating function for the sequence

hf0; f1; f2; : : : i:

Then
f0 D F.0/

and
F .n/.0/

fn D
nŠ

for n � 1, where F .n/.0/ is the nth derivative of F.x/ evaluated at x D 0.

This is because if

F.x/ D f0 C f1x C f2x 2
C � � � ;

then

F.0/ D f0 C f1 � 0 C f2 � 0
2
C � � �

D f0:

Also,

F 0.x/ D
d

.F .x//
dx

D f1 C 2f2x C 3f3x 2
C 4f4x 3

C � � �

and so
F 0.0/ D f1;

364

“mcs-ftl” — 2010/9/8 — 0:40 — page 364 — #370

Chapter 12 Generating Functions

as desired. Taking second derivatives, we find that

F 00.x/ D
d

.F 0.x//
dx

D 2f2 C 3 � 2f3x C 4 � 3f4x 2
C � � �

and so
F 00.0/ D 2f2;

which means that
F 00.0/

f2 D :
2

In general,

.n C 2/Š
F .n/ 2

D nŠfn C .n C 1/ŠfnC1x C fnC2x C � � �
2

.n C k/Š k
C

kŠ
fnCk x C � � �

and so
F .n/.0/ D nŠfn

and
F .n/.0/

fn D ;
nŠ

as claimed.

This means that
* +

F.0/; F 0.0/;
F 00.0/

;
F 000.0/

; : : : ;
F .n/.0/

; : : : ! F.x/: (12.4)
2Š 3Š nŠ

The sequence on the left-hand side of Equation 12.4 gives the well-known Taylor
Series expansion for a function

F.x/ D F.0/ C F 0.0/x C
F 00.0/

x 2
C

F 000.0/
x 3
C � � � C

F .n/.0/
x n
C � � � :

2Š 3Š nŠ

12.4.2 Examples

Let’s try this out on a familiar example:

1
F.x/ D :

1 � x

365

“mcs-ftl” — 2010/9/8 — 0:40 — page 365 — #371

12.4. Extracting Coefficients

Computing derivatives, we find that

F 0.x/ D
1

;
.1 � x/2

F 00.x/ D
2

;
.1 � x/3

F 000.x/ D
2 � 3

;
.1 � x/4

:::

nŠ
F .n/ :D

.1 � x/nC1

This means that the coefficient of xn in 1=.1 � x/ is

F .n/.0/ nŠ

nŠ
D

nŠ .1 � 0/nC1
D 1:

In other words, we have reconfirmed what we already knew; namely, that

1 2 x :D 1 C x C C � � �
x1 �

Using a similar approach, we can establish some other well-known series:

2 3 nx x x
e x
D 1 C x C

2Š
C

3Š
C � � � C

nŠ
C � � � ;

2 3 n

e ax
D 1 C ax C

a

2Š
x 2
C

a

3Š
x 3
C � � � C

a

nŠ
x n
C � � � ;

2 3 n

x x x :ln.1 � x/ D �ax �
a

2
2
�

a

3
3
� � � � �

a

n
n
� � � �

But what about the series for

x.1 C x/
F.x/ D ‹ (12.5)

.1 � x/4

In particular, we need to know the coefficient of xn in F.x/ to determine
nX

sn D i2:
iD0

While it is theoretically possible to compute the nth derivative of F.x/, the result
is a bloody mess. Maybe these generating functions weren’t such a great idea after
all. . . .

366

“mcs-ftl” — 2010/9/8 — 0:40 — page 366 — #372

Chapter 12 Generating Functions

12.4.3 Massage Helps

In times of stress, a little massage can often help relieve the tension. The same is
true for polynomials with painful derivatives. For example, let’s take a closer look
at Equation 12.5. If we massage it a little bit, we find that

x C 2 2x x x
F.x/ D

.1 � x/4
D

.1 � x/4
C

.1 � x/4
: (12.6)

The goal is to find the coefficient of xn in F.x/. If you stare at Equation 12.6 long
enough (or if you combine the Right-Shift Rule with the Addition Rule), you will
notice that the coefficient of xn in F.x/ is just the sum of

the coefficient of x n�1 in
1

and
.1 � x/4

the coefficient of x n�2 in
1

:
.1 � x/4

Maybe there is some hope after all. Let’s see if we can produce the coefficients
for 1=.1 � x/4. We’ll start by looking at the derivatives:

F 0.x/ D
4

;
.1 � x/5

F 00.x/ D
4 � 5

;
.1 � x/6

F 000.x/ D
4 � 5 � 6

;
.1 � x/7

:::

.n C 3/Š
F .n/.x/ D :

6.1 � x/nC4

This means that the nth coefficient of 1=.1 � x/4 is

F .n/.0/
D

.n C 3/Š
D

.n C 3/.n C 2/.n C 1/
: (12.7)

nŠ 6nŠ 6

We are now almost done. Equation 12.7 means that the coefficient of xn�1

in 1=.1 � x/4 is
.n C 2/.n C 1/n

(12.8)
6

367

“mcs-ftl” — 2010/9/8 — 0:40 — page 367 — #373

12.4. Extracting Coefficients

and the coefficient2 of xn�2 is

.n C 1/n.n � 1/
: (12.9)

6

Adding these values produces the desired sum

nX .n C 2/.n C 1/n .n C 1/n.n � 1/
i2
D

6
C

6
iD0

.2n C 1/.n C 1/n
:D

6

This matches Equation 9.14 from Chapter 9. Using generating functions to get the
result may have seemed to be more complicated, but at least there was no need for
guessing or solving a linear system of equations over 4 variables.

You might argue that the massage step was a little tricky. After all, how were you
supposed to know that by converting F.x/ into the form shown in Equation 12.6,
it would be sufficient to compute derivatives of 1=.1 � x/4, which is easy, instead
of derivatives of x.1 C x/=.1 � x/4, which could be harder than solving a 64-disk
Tower of Hanoi problem step-by-step?

The good news is that this sort of massage works for any generating function
that is a ratio of polynomials. Even better, you probably already know how to do it
from calculus—it’s the method of partial fractions!

12.4.4 Partial Fractions

The idea behind partial fractions is to express a ratio of polynomials as a sum of a
polynomial and terms of the form

acx
(12.10)

.1 � ˛x/b

where a and b are integers and b > a � 0. That’s because it is easy to com
pute derivatives of 1=.1 � ˛x/b and thus it is easy to compute the coefficients of
Equation 12.10. Let’s see why.

Lemma 12.4.2. If b 2 NC, then the nth derivative of 1=.1 � ˛x/b is

.n C b � 1/Š ˛n

:
.b � 1/Š .1 � ˛x/bCn

2To be precise, Equation 12.8 holds for n � 1 and Equation 12.9 holds for n � 2. But since
Equation 12.8 is 0 for n D 1 and Equation 12.9 is 0 for n D 1; 2, both equations hold for all n � 0.

368

“mcs-ftl” — 2010/9/8 — 0:40 — page 368 — #374

Chapter 12 Generating Functions

Proof. The proof is by induction on n. The induction hypothesis P.n/ is the state
ment of the lemma.

Base case (n D 1): The first derivative is

b˛
:

.1 � ˛x/bC1

This matches
.1 C b � 1/Š ˛1 b˛

;
.b � 1/Š .1 � ˛x/bC1

D
.1 � ˛x/bC1

and so P.1/ is true.

Induction step: We next assume P.n/ to prove P.n C 1/ for n � 1. P.n/ implies
that the nth derivative of 1=.1 � ˛x/b is

.n C b � 1/Š ˛n

:
.b � 1/Š .1 � ˛x/bCn

Taking one more derivative reveals that the .n C 1/st derivative is

.n C b � 1/Š .b C n/˛nC1 .n C b/Š ˛nC1

;
.b � 1/Š .1 � ˛x/bCnC1

D
.b � 1/Š .1 � ˛x/bCnC1

which means that P.n C 1/ is true. Hence, the induction is complete. �

Corollary 12.4.3. If a; b 2 N and b > a � 0, then for any n � a, the coefficient
of xn in

acx

.1 � ˛x/b

is
c.n � a C b � 1/Š ˛n�a

:
.n � a/Š .b � 1/Š

Proof. By the Taylor Series Rule, the nth coefficient of

1

.1 � ˛x/b

is the nth derivative of this expression evaluated at x D 0 and then divided by nŠ.
By Lemma 12.4.2, this is

.n C b � 1/Š ˛n .n C b � 1/Š ˛n

:
nŠ .b � 1/Š .1 � 0/bCn

D
nŠ .b � 1/Š

“mcs-ftl” — 2010/9/8 — 0:40 — page 369 — #375

12.4. Extracting Coefficients 369

By the Scaling Rule and the Right-Shift Rule, the coefficient of xn in
˛cx

.1 � ˛x/b

is thus
c.n � a C b � 1/Š ˛n�a

:
.n � a/Š .b � 1/Š

as claimed. �

Massaging a ratio of polynomials into a sum of a polynomial and terms of the
form in Equation 12.10 takes a bit of work but is generally straightforward. We
will show you the process by means of an example.

Suppose our generating function is the ratio

4x3 C 2x2 C 3x C 6
F.x/ D : (12.11)

2x3 � 3x2 C 1
The first step in massaging F.x/ is to get the degree of the numerator to be less than
the degree of the denominator. This can be accomplished by dividing the numerator
by the denominator and taking the remainder, just as in the Fundamental Theorem
of Arithmetic—only now we have polynomials instead of numbers. In this case we
have

4x3 C 2x2 C 3x C 6 8x2 C 3x C 4
:

2x3 � 3x2 C 1
D 2 C

2x3 � 3x2 C 1
The next step is to factor the denominator. This will produce the values of ˛ for

Equation 12.10. In this case,

2x3
� 3x2

C 1 D .2x C 1/.x2
� 2x C 1/

D .2x C 1/.x � 1/2

D .1 � x/2.1 C 2x/:

We next find values c1, c2, c3 so that

8x2 C 3x C 4 c1 c2 c3x

2x3 � 3x2 C 1
D

1 C 2x
C

.1 � x/2
C

.1 � x/2
: (12.12)

This is done by cranking through the algebra:

c1 c2 c3x c1.1 � x/2 c2.1 C 2x/ C c3x.1 C 2x/

1 C 2x
C

.1 � x/2
C

.1 � x/2
D

C

.1 C 2x/.1 � x/2

c1 � 2c1x C c1x2 C c2 C 2c2x C c3x C 2c3x2

D
2x3 � 3x2 C 1

.�2c1 C 2c2 C c3/x C .c1 C 2c3/x2

D
c1 C c2 C

2x3 � 3x2 C 1
:

370

“mcs-ftl” — 2010/9/8 — 0:40 — page 370 — #376

Chapter 12 Generating Functions

For Equation 12.12 to hold, we need

8 D c1 C 2c3;

3 D �2c1 C 2c2 C c3;

4 D c1 C c2:

Solving these equations, we find that c1 D 2, c2 D 2, and c3 D 3. Hence,

4x3 C 2x2 C 3x C 6
F.x/ D

2x3 � 3x2 C 1
2 2 3x

D 2 C
1 C 2x

C
.1 � x/2

C
.1 � x/2

:

Our massage is done! We can now compute the coefficients of F.x/ using Corol
lary 12.4.3 and the Sum Rule. The result is

f0 D 2 C 2 C 2 D 6

and

2.n � 0 C 1 � 1/Š .�2/n�0

fn D
.n � 0/Š .1 � 1/Š

2.n � 0 C 2 � 1/Š .1/n�0

C
.n � 0/Š .2 � 1/Š

3.n � 1 C 2 � 1/Š .1/n�1

C
.n � 1/Š .2 � 1/Š

D .�1/n2nC1
C 2.n C 1/ C 3n

D .�1/n2nC1
C 5n C 2

for n � 1.
Aren’t you glad that you know that? Actually, this method turns out to be useful

in solving linear recurrences, as we’ll see in the next section.

12.5 Solving Linear Recurrences

Generating functions can be used to find a solution to any linear recurrence. We’ll
show you how this is done by means of a familiar example, the Fibonacci recur
rence, so that you can more easily understand the similarities and differences of
this approach and the method we showed you in Chapter 10.

371

“mcs-ftl” — 2010/9/8 — 0:40 — page 371 — #377

12.5. Solving Linear Recurrences

12.5.1 Finding the Generating Function

Let’s begin by recalling the definition of the Fibonacci numbers:

f0 D 0

f1 D 1

fn D fn�1 C fn�2 for n � 2:

We can expand the final clause into an infinite sequence of equations. Thus, the
Fibonacci numbers are defined by:

f0 D0

f1 D1

f2 Df1 C f0

f3 Df2 C f1

f4 Df3 C f2

:::

The overall plan is to define a function F.x/ that generates the sequence on the
left side of the equality symbols, which are the Fibonacci numbers. Then we derive
a function that generates the sequence on the right side. Finally, we equate the two
and solve for F.x/. Let’s try this. First, we define:

F.x/ D f0 C f1x C f2x 2
C f3x 3

C f4x 4
C � � � :

Now we need to derive a generating function for the sequence:

h0; 1; f1 C f0; f2 C f1; f3 C f2; : : : i :

One approach is to break this into a sum of three sequences for which we know
generating functions and then apply the Addition Rule:

h0; 1; 0; 0; 0; : : : i ! x

h0; f0; f1; f2; f3; : : : i ! xF.x/

C h0; 0; f0; f1; f2; : : : i ! x2F.x/

h0; 1 C f0; f1 C f0; f2 C f1; f3 C f2; : : : i ! x C xF.x/ C x2F.x/

This sequence is almost identical to the right sides of the Fibonacci equations. The
one blemish is that the second term is 1 C f0 instead of simply 1. However, this
amounts to nothing, since f0 D 0 anyway.

“mcs-ftl” — 2010/9/8 — 0:40 — page 372 — #378

372 Chapter 12 Generating Functions

If we equate F.x/ with the new function x C xF.x/ C x2F.x/, then we’re
implicitly writing down all of the equations that define the Fibonacci numbers in
one fell swoop:

F.x/ D f0 C f1 x C f2 x2 C f3 x3 C � � �

Î Î Î Î Î
x C xF.x/ C x2F.x/ D 0 C .1 C f0/x C .f1 C f0/x2 C .f2 C f1/x3 C � � �

Solving for F.x/ gives the generating function for the Fibonacci sequence:

F.x/ D x C xF.x/ C x 2F.x/

so
x

F.x/ D : (12.13)
1 � x � 2x

This is pretty cool. After all, who would have thought that the Fibonacci numbers
are precisely the coefficients of such a simple function? Even better, this function
is a ratio of polynomials and so we can use the method of partial fractions from
Section 12.4.4 to find a closed-form expression for the nth Fibonacci number.

12.5.2 Extracting the Coefficients

Repeated differentiation of Equation 12.13 would be very painful. But it is easy to
use the method of partial fractions to compute the coefficients. Since the degree of
the numerator in Equation 12.13 is less than the degree of the denominator, the first
step is to factor the denominator:

1 � x � x 2
D .1 � ˛1x/.1 � ˛2x/

where ˛1 D .1 C
p

5/=2 and ˛2 D .1 �
p

5/=2. These are the same as the
roots of the characteristic equation for the Fibonacci recurrence that we found in
Chapter 10. That is not a coincidence.

The next step is to find c1 and c2 that satisfy

x c1 c2
2
D C

1 � x � x 1 � ˛1x 1 � ˛2x

c1.1 � ˛2x/ C c2.1 � ˛1x/
D

.1 � ˛1x/.1 � ˛2x/

D
c1 C c2

1

�

�

.c

x
1˛

�

2 C

2

c2˛1/x
:

x

Hence,
c1 C c2 D 0 and � .c1˛2 C c2˛1/ D 1:

373

“mcs-ftl” — 2010/9/8 — 0:40 — page 373 — #379

12.5. Solving Linear Recurrences

Solving these equations, we find that

1 1
c1 D D p

˛1 � ˛2 5

c2 D
�1

D
�1
p :

˛1 � ˛2 5

We can now use Corollary 12.4.3 and the Sum Rule to conclude that

˛n ˛n

fn D p
1

5
� p

2

5
 ! ! !
D p

1

5

1 C

2

p
5

n

�
1 �

2

p
5

n

:

This is exactly the same formula we derived for the nth Fibonacci number in Chap
ter 10.

12.5.3 General Linear Recurrences

The method that we just used to solve the Fibonacci recurrence can also be used to
solve general linear recurrences of the form

fn D a1fn�1 C a2fn�2 C � � � C ad fn�d C gn

for n � d . The generating function for hf0; f1; f2; : : : i is

h.x/ CG.x/
F.x/ D

1 � a1x � a2x2 � � � � � ad x
d

where G.x/ is the generating function for the sequence

d ‚ …„ ƒ
h0; 0; : : : ; 0; gd ; gd C1; gd C2; : : : i

and h.x/ is a polynomial of degree at most d � 1 that is based on the values of f0,
f1, . . . , fd �1. In particular,

d �1X
h.x/ D hi x i

iD0

where
hi D f0 � a1fi�1 � a2fi�2 � � � � � ai f0

for 0 � i < d .
To solve the recurrence, we use the method of partial fractions described in Sec

tion 12.4.4 to find a closed-form expression for F.x/. This can be easy or hard to
do depending on G.x/.

� �

“mcs-ftl” — 2010/9/8 — 0:40 — page 374 — #380

k
2

374 Chapter 12 Generating Functions

kk
k

2

12.6 Counting with Generating Functions

2

Generating functions are particularly useful for solving counting problems. In par

k
2

ticular, problems involving choosing items from a set often lead to nice generating
functions by letting the coefficient of xn be the number of ways to choose n items.

k
1

12.6.1 Choosing Distinct Items from a Set

k
0

k
n

The generating function for binomial coefficients follows directly from the Bino
mial Theorem: D� � � � � � � � E � � � � � � � �

; ; ; : : : ; ; 0; 0; 0; : : : ! C x C x C � � � C x

D .1 C x/k

nThus, the coefficient of x in .1 C x/k is , the number of ways to choose � �n

k
k

distinct items3 from a set of size k. For example, the coefficient of x is ,
the number of ways to choose 2 items from a set with k elements. Similarly, the
coefficient of xkC1 is the number of ways to choose k C 1 items from a size k set,

k
2

which is zero.

k
1

12.6.2 Building Generating Functions that Count

k
0

Often we can translate the description of a counting problem directly into a gen
erating function for the solution. For example, we could figure out that .1 C x/k

generates the number of ways to select n distinct items from a k-element set with
out resorting to the Binomial Theorem or even fussing with binomial coefficients!
Let’s see how.

First, consider a single-element set fa1g. The generating function for the number
of ways to select n elements from this set is simply 1 C x: we have 1 way to select
zero elements, 1 way to select one element, and 0 ways to select more than one
element. Similarly, the number of ways to select n elements from the set fa2g is
also given by the generating function 1 C x. The fact that the elements differ in the
two cases is irrelevant.

Now here is the main trick: the generating function for choosing elements from
a union of disjoint sets is the product of the generating functions for choosing from
each set. We’ll justify this in a moment, but let’s first look at an example. Ac
cording to this principle, the generating function for the number of ways to select

3Watch out for the reversal of the roles that k and n played in earlier examples; we’re led to this
reversal because we’ve been using n to refer to the power of x in a power series.

375

“mcs-ftl” — 2010/9/8 — 0:40 — page 375 — #381

12.6. Counting with Generating Functions

n elements from the fa1; a2g is:

.1 C x/ .1 C x/ .1 C x/2
D 1 C 2x C x 2: „ ƒ‚ … � „ ƒ‚ … D „ ƒ‚ …

select from fa1g select from fa2g select from fa1; a2g

Sure enough, for the set fa1; a2g, we have 1 way to select zero elements, 2 ways to
select one element, 1 way to select two elements, and 0 ways to select more than
two elements.

Repeated application of this rule gives the generating function for selecting n
items from a k-element set fa1; a2; : : : ; ak g:

.1 C x/ „ ƒ‚ … � .1 C x/ „ ƒ‚ … � � � .1 C x/ „ ƒ‚ … D .1 C x/k „ ƒ‚ …
select from fa1g select from fa2g select from fakg select from

fa1; a2; : : : ; akg

This is the same generating function that we obtained by using the Binomial Theo
rem. But this time around, we translated directly from the counting problem to the
generating function.

We can extend these ideas to a general principle:

Rule 12.6.1 (Convolution Rule). Let A.x/ be the generating function for selecting
items from set A, and let B.x/ be the generating function for selecting items from
set B. If A and B are disjoint, then the generating function for selecting items from
the union A [B is the product A.x/ � B.x/.

This rule is rather ambiguous: what exactly are the rules governing the selection
of items from a set? Remarkably, the Convolution Rule remains valid under many
interpretations of selection. For example, we could insist that distinct items be
selected or we might allow the same item to be picked a limited number of times or
any number of times. Informally, the only restrictions are that (1) the order in which
items are selected is disregarded and (2) restrictions on the selection of items from
sets A and B also apply in selecting items from A [B. (Formally, there must be a
bijection between n-element selections from A [B and ordered pairs of selections
from A and B containing a total of n elements.)

To count the number of ways to select n items from A [B, we observe that we
can select n items by choosing j items from A and n � j items from B, where j is
any number from 0 to n. This can be done in aj bn�j ways. Summing over all the
possible values of j gives a total of

a0bn C a1bn�1 C a2bn�2 C � � � C anb0

ways to select n items from A [B. By the Product Rule, this is precisely the
coefficient of xn in the series for A.x/B.x/.

� �

376

“mcs-ftl” — 2010/9/8 — 0:40 — page 376 — #382

Chapter 12 Generating Functions

12.6.3 Choosing Items with Repetition

The first counting problem we considered was the number of ways to select a dozen
doughnuts when five flavors were available. We can generalize this question as
follows: in how many ways can we select n items from a k-element set if we’re
allowed to pick the same item multiple times? In these terms, the doughnut problem
asks how many ways we can select n D 12 doughnuts from the set of k D 5 flavors

fchocolate; lemon-filled; sugar; glazed; plaing

where, of course, we’re allowed to pick several doughnuts of the same flavor. Let’s
approach this question from a generating functions perspective.

Suppose we make n choices (with repetition allowed) of items from a set con
taining a single item. Then there is one way to choose zero items, one way to
choose one item, one way to choose two items, etc. Thus, the generating function
for choosing n elements with repetition from a 1-element set is:

1
h1; 1; 1; 1; : : : i ! 1 C x C x 2

C x 3
C � � � D

1 �
:

x

The Convolution Rule says that the generating function for selecting items from
a union of disjoint sets is the product of the generating functions for selecting items
from each set:

1 1 1 1

1 � x„ƒ‚… �
1 � x„ƒ‚… � � �

1 � x„ƒ‚… D
.1 � x/k „ ƒ‚ …

choose a1’s choose a2’s choose ak ’s repeatedly choose from
fa1; a2; : : : ; ak g

Therefore, the generating function for choosing items from a k-element set with
repetition allowed is 1=.1 � x/k . Computing derivatives and applying the Taylor
Series Rule, we can find that the coefficient of xn in 1=.1 � x/k is !

n C k � 1
:

n

This is the Bookkeeper Rule from Chapter 11—namely there are nC

n
k�1 ways to

select n items with replication from a set of k items.

12.6.4 Fruit Salad

In this chapter, we have covered a lot of methods and rules for using generating
functions. We’ll now do an example that demonstrates how the rules and methods
can be combined to solve a more challenging problem—making fruit salad.

377

“mcs-ftl” — 2010/9/8 — 0:40 — page 377 — #383

12.6. Counting with Generating Functions

In how many ways can we make a salad with n fruits subject to the following
constraints?

� The number of apples must be even.

� The number of bananas must be a multiple of 5.

� There can be at most four oranges.

� There can be at most one pear.

For example, there are 7 ways to make a salad with 6 fruits:

Apples 6 4 4 2 2 0 0
Bananas 0 0 0 0 0 5 5
Oranges 0 2 1 4 3 1 0

Pears 0 0 1 0 1 0 1

These constraints are so complicated that the problem seems hopeless! But gener
ating functions can solve the problem in a straightforward way.

Let’s first construct a generating function for choosing apples. We can choose a
set of 0 apples in one way, a set of 1 apple in zero ways (since the number of apples
must be even), a set of 2 apples in one way, a set of 3 apples in zero ways, and so
forth. So we have:

1
A.x/ D 1 C x 2

C x 4
C x 6

C � � � D
1 � 2

:
x

Similarly, the generating function for choosing bananas is:

1
B.x/ D 1 C x 5

C x 10
C x 15

C � � � D
1 � 5

:
x

We can choose a set of 0 oranges in one way, a set of 1 orange in one way, and so
on. However, we can not choose more than four oranges, so we have the generating
function:

x2 3 4 1 � 5

O.x/ D 1 C x C x C x C x D
1 �

:
x

Here we’re using the geometric sum formula. Finally, we can choose only zero or
one pear, so we have:

P.x/ D 1 C x:

378

“mcs-ftl” — 2010/9/8 — 0:40 — page 378 — #384

Chapter 12 Generating Functions

The Convolution Rule says that the generating function for choosing from among
all four kinds of fruit is:

1 1 1 � x5

A.x/B.x/O.x/P.x/ D
1 � 2 1 � 5 1 �

.1 C x/
x x x
1

D
.1 � x/2

D 1 C 2x C 3x2
C 4x3

C � � � :

Almost everything cancels! We’re left with 1=.1 � x/2, which we found a power
series for earlier: the coefficient of xn is simply n C 1. Thus, the number of ways
to make a salad with n fruits is just n C 1. This is consistent with the example
we worked out at the start, since there were 7 different salads containing 6 fruits.
Amazing!

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

