
4

“mcs-ftl” — 2010/9/8 — 0:40 — page 81 — #87

Number Theory
Number theory is the study of the integers. Why anyone would want to study the
integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s
1, 2, 3, and so on, and, oh yeah, -1, -2, Which one don’t you understand? Sec
ond, what practical value is there in it? The mathematician G. H. Hardy expressed
pleasure in its impracticality when he wrote:

[Number theorists] may be justified in rejoicing that there is one sci
ence, at any rate, and that their own, whose very remoteness from or
dinary human activities should keep it gentle and clean.

Hardy was specially concerned that number theory not be used in warfare; he was
a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory
underlies modern cryptography, which is what makes secure online communication
possible. Secure communication is of course crucial in war—which may leave poor
Hardy spinning in his grave. It’s also central to online commerce. Every time you
buy a book from Amazon, check your grades on WebSIS, or use a PayPal account,
you are relying on number theoretic algorithms.

Number theory also provides an excellent environment for us to practice and
apply the proof techniques that we developed in Chapters 2 and 3.

Since we’ll be focusing on properties of the integers, we’ll adopt the default
convention in this chapter that variables range over the set of integers, Z.

4.1 Divisibility

The nature of number theory emerges as soon as we consider the divides relation

a divides b iff ak D b for some k:

The notation, a j b, is an abbreviation for “a divides b.” If a j b, then we also
say that b is a multiple of a. A consequence of this definition is that every number
divides zero.

This seems simple enough, but let’s play with this definition. The Pythagoreans,
an ancient sect of mathematical mystics, said that a number is perfect if it equals the
sum of its positive integral divisors, excluding itself. For example, 6 D 1 C 2 C 3
and 28 D 1 C 2 C 4 C 7 C 14 are perfect numbers. On the other hand, 10 is not
perfect because 1C2C5 D 8, and 12 is not perfect because 1C2C3C4C6 D 16.

82

“mcs-ftl” — 2010/9/8 — 0:40 — page 82 — #88

Chapter 4 Number Theory

Euclid characterized all the even perfect numbers around 300 BC. But is there an
odd perfect number? More than two thousand years later, we still don’t know! All
numbers up to about 10300 have been ruled out, but no one has proved that there
isn’t an odd perfect number waiting just over the horizon.

So a half-page into number theory, we’ve strayed past the outer limits of human
knowledge! This is pretty typical; number theory is full of questions that are easy
to pose, but incredibly difficult to answer.1 For example, several such problems
are shown in the box on the following page. Interestingly, we’ll see that computer
scientists have found ways to turn some of these difficulties to their advantage.

4.1.1 Facts about Divisibility

The lemma below states some basic facts about divisibility that are not difficult to
prove:

Lemma 4.1.1. The following statements about divisibility hold.

1. If a j b, then a j bc for all c.

2. If a j b and b j c, then a j c.

3. If a j b and a j c, then a j sb C tc for all s and t .

4. For all c ¤ 0, a j b if and only if ca j cb.

Proof. We’ll prove only part 2.; the other proofs are similar.
Proof of 2: Assume a j b and b j c. Since a j b, there exists an integer k1

such that ak1 D b. Since b j c, there exists an integer k2 such that bk2 D c.
Substituting ak1 for b in the second equation gives .ak1/k2 D c. So a.k1k2/ D c,
which implies that a j c. �

4.1.2 When Divisibility Goes Bad

As you learned in elementary school, if one number does not evenly divide another,
you get a “quotient” and a “remainder” left over. More precisely:

Theorem 4.1.2 (Division Theorem). 3 Let n and d be integers such that d > 0.
Then there exists a unique pair of integers q and r , such that

n D q � d C r AND 0 � r < d: (4.1)
1Don’t Panic—we’re going to stick to some relatively benign parts of number theory. These

super-hard unsolved problems rarely get put on problem sets.
3This theorem is often called the “Division Algorithm,” even though it is not what we would call

an algorithm. We will take this familiar result for granted without proof.

83

“mcs-ftl” — 2010/9/8 — 0:40 — page 83 — #89

4.1. Divisibility

Famous Conjectures in Number Theory
Fermat’s Last Theorem There are no positive integers x, y, and z such that

x n
C y n

D z n

for some integer n > 2. In a book he was reading around 1630, Fermat
claimed to have a proof but not enough space in the margin to write it
down. Wiles finally gave a proof of the theorem in 1994, after seven years
of working in secrecy and isolation in his attic. His proof did not fit in any
margin.

Goldbach Conjecture Every even integer greater than two is equal to the sum of
two primes2. For example, 4 D 2 C 2, 6 D 3 C 3, 8 D 3 C 5, etc. The
conjecture holds for all numbers up to 1016 . In 1939 Schnirelman proved
that every even number can be written as the sum of not more than 300,000
primes, which was a start. Today, we know that every even number is the
sum of at most 6 primes.

Twin Prime Conjecture There are infinitely many primes p such that p C 2 is
also a prime. In 1966 Chen showed that there are infinitely many primes p
such that p C 2 is the product of at most two primes. So the conjecture is
known to be almost true!

Primality Testing There is an efficient way to determine whether a number is
prime. A naive search for factors of an integer n takes a number of steps
proportional to

p
n, which is exponential in the size of n in decimal or bi

nary notation. All known procedures for prime checking blew up like this
on various inputs. Finally in 2002, an amazingly simple, new method was
discovered by Agrawal, Kayal, and Saxena, which showed that prime test
ing only required a polynomial number of steps. Their paper began with a
quote from Gauss emphasizing the importance and antiquity of the prob
lem even in his time—two centuries ago. So prime testing is definitely not
in the category of infeasible problems requiring an exponentially growing
number of steps in bad cases.

Factoring Given the product of two large primes n D pq, there is no efficient
way to recover the primes p and q. The best known algorithm is the “num
ber field sieve”, which runs in time proportional to:

1:9.ln n/1=3 .ln ln n/2=3
e

This is infeasible when n has 300 digits or more.

84

“mcs-ftl” — 2010/9/8 — 0:40 — page 84 — #90

Chapter 4 Number Theory

The number q is called the quotient and the number r is called the remainder of
n divided by d . We use the notation qcnt.n; d/ for the quotient and rem.n; d/ for
the remainder.

For example, qcnt.2716; 10/ D 271 and rem.2716; 10/ D 6, since 2716 D
271 � 10 C 6. Similarly, rem.�11; 7/ D 3, since �11 D .�2/ � 7 C 3. There
is a remainder operator built into many programming languages. For example,
the expression “32 % 5” evaluates to 2 in Java, C, and C++. However, all these
languages treat negative numbers strangely.

4.1.3 Die Hard

Simon: On the fountain, there should be 2 jugs, do you see them? A 5-gallon and
a 3-gallon. Fill one of the jugs with exactly 4 gallons of water and place it on
the scale and the timer will stop. You must be precise; one ounce more or less
will result in detonation. If you’re still alive in 5 minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?
Samuel: No.
Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gallons of

water.
Samuel: Obviously.
Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to the top,

right?
Samuel: Uh-huh.
Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us exactly

3 gallons in the 5-gallon jug, right?
Samuel: Right, then what?
Bruce: All right. We take the 3-gallon jug and fill it a third of the way. . .
Samuel: No! He said, “Be precise.” Exactly 4 gallons.
Bruce: Sh—. Every cop within 50 miles is running his a— off and I’m out here

playing kids’ games in the park.
Samuel: Hey, you want to focus on the problem at hand?

The preceding script is from the movie Die Hard 3: With a Vengeance. In the
movie, Samuel L. Jackson and Bruce Willis have to disarm a bomb planted by the
diabolical Simon Gruber. Fortunately, they find a solution in the nick of time. (No
doubt reading the script helped.) On the surface, Die Hard 3 is just a B-grade
action movie; however, we think the inner message of the film is that everyone
should learn at least a little number theory.

Unfortunately, Hollywood never lets go of a gimmick. Although there were no
water jug tests in Die Hard 4: Live Free or Die Hard, rumor has it that the jugs will

85

“mcs-ftl” — 2010/9/8 — 0:40 — page 85 — #91

4.1. Divisibility

return in future sequels:

Die Hard 5: Die Hardest Bruce goes on vacation and—shockingly—happens into
a terrorist plot. To save the day, he must make 3 gallons using 21- and 26
gallon jugs.

Die Hard 6: Die of Old Age Bruce must save his assisted living facility from a
criminal mastermind by forming 2 gallons with 899- and 1147-gallon jugs.

Die Hard 7: Die Once and For All Bruce has to make 4 gallons using 3- and 6
gallon jugs.

It would be nice if we could solve all these silly water jug questions at once. In
particular, how can one form g gallons using jugs with capacities a and b?

That’s where number theory comes in handy.

Finding an Invariant Property

Suppose that we have water jugs with capacities a and b with b � a. The state of
the system is described below with a pair of numbers .x; y/, where x is the amount
of water in the jug with capacity a and y is the amount in the jug with capacity b.
Let’s carry out sample operations and see what happens, assuming the b-jug is big
enough:

.0; 0/ ! .a; 0/ fill first jug

! .0; a/ pour first into second

! .a; a/ fill first jug

! .2a � b; b/ pour first into second (assuming 2a � b)

! .2a � b; 0/ empty second jug

! .0; 2a � b/ pour first into second

! .a; 2a � b/ fill first

! .3a � 2b; b/ pour first into second (assuming 3a � 2b)

What leaps out is that at every step, the amount of water in each jug is of the form

s � a C t � b (4.2)

for some integers s and t . An expression of the form (4.2) is called an integer linear
combination of a and b, but in this chapter we’ll just call it a linear combination,
since we’re only talking integers. So we’re suggesting:

Lemma 4.1.3. Suppose that we have water jugs with capacities a and b. Then the
amount of water in each jug is always a linear combination of a and b.

86

“mcs-ftl” — 2010/9/8 — 0:40 — page 86 — #92

Chapter 4 Number Theory

Lemma 4.1.3 is easy to prove by induction on the number of pourings.

Proof. The induction hypothesis, P.n/, is the proposition that after n steps, the

amount of water in each jug is a linear combination of a and b.

Base case: (n D 0). P.0/ is true, because both jugs are initially empty, and

0 � a C 0 � b D 0.

Inductive step. We assume by induction hypothesis that after n steps the amount

of water in each jug is a linear combination of a and b. There are two cases:

�	If we fill a jug from the fountain or empty a jug into the fountain, then that jug
is empty or full. The amount in the other jug remains a linear combination
of a and b. So P.n C 1/ holds.

�	Otherwise, we pour water from one jug to another until one is empty or the
other is full. By our assumption, the amount in each jug is a linear combina
tion of a and b before we begin pouring:

s1j1 D � a C t1 � b

j2 D s2 � a C t2 � b

After pouring, one jug is either empty (contains 0 gallons) or full (contains a
or b gallons). Thus, the other jug contains either j1 Cj2 gallons, j1 Cj2 �a,
or j1 C j2 � b gallons, all of which are linear combinations of a and b. So
P.n C 1/ holds in this case as well.

So in any case, P.n C 1/ follows, completing the proof by induction. �

So we have established that the jug problem has an invariant property, namely
that the amount of water in every jug is always a linear combination of the capacities
of the jugs. This lemma has an important corollary:

Corollary 4.1.4. Bruce dies.

Proof. In Die Hard 7, Bruce has water jugs with capacities 3 and 6 and must form
4 gallons of water. However, the amount in each jug is always of the form 3s C 6t
by Lemma 4.1.3. This is always a multiple of 3 by part 3 of Lemma 4.1.1, so he
cannot measure out 4 gallons. �

But Lemma 4.1.3 isn’t very satisfying. We’ve just managed to recast a pretty
understandable question about water jugs into a complicated question about linear
combinations. This might not seem like a lot of progress. Fortunately, linear com
binations are closely related to something more familiar, namely greatest common
divisors, and these will help us solve the water jug problem.

87

“mcs-ftl” — 2010/9/8 — 0:40 — page 87 — #93

4.2. The Greatest Common Divisor

4.2 The Greatest Common Divisor

The greatest common divisor of a and b is exactly what you’d guess: the largest
number that is a divisor of both a and b. It is denoted by gcd.a; b/. For example,
gcd.18; 24/ D 6. The greatest common divisor turns out to be a very valuable
piece of information about the relationship between a and b and for reasoning about
integers in general. So we’ll be making lots of arguments about greatest common
divisors in what follows.

4.2.1 Linear Combinations and the GCD

The theorem below relates the greatest common divisor to linear combinations.
This theorem is very useful; take the time to understand it and then remember it!

Theorem 4.2.1. The greatest common divisor of a and b is equal to the smallest
positive linear combination of a and b.

For example, the greatest common divisor of 52 and 44 is 4. And, sure enough,
4 is a linear combination of 52 and 44:

6 � 52 C .�7/ � 44 D 4

Furthermore, no linear combination of 52 and 44 is equal to a smaller positive
integer.

Proof of Theorem 4.2.1. By the Well Ordering Principle, there is a smallest positive
linear combination of a and b; call it m. We’ll prove that m D gcd.a; b/ by showing
both gcd.a; b/ � m and m � gcd.a; b/.

First, we show that gcd.a; b/ � m. Now any common divisor of a and b—that
is, any c such that c j a and c j b—will divide both sa and tb, and therefore also
sa C tb for any s and t . The gcd.a; b/ is by definition a common divisor of a and
b, so

gcd.a; b/ j sa C tb (4.3)

for every s and t . In particular, gcd.a; b/ j m, which implies that gcd.a; b/ � m.
Now, we show that m � gcd.a; b/. We do this by showing that m j a. A

symmetric argument shows that m j b, which means that m is a common divisor of
a and b. Thus, m must be less than or equal to the greatest common divisor of a
and b.

All that remains is to show that m j a. By the Division Algorithm, there exists a
quotient q and remainder r such that:

a D q �m C r (where 0 � r < m)

88

“mcs-ftl” — 2010/9/8 — 0:40 — page 88 — #94

Chapter 4 Number Theory

Recall that m D sa C tb for some integers s and t . Substituting in for m gives:

a D q � .sa C tb/ C r; so

r D .1 � qs/a C .�qt/b:

We’ve just expressed r as a linear combination of a and b. However, m is the
smallest positive linear combination and 0 � r < m. The only possibility is that
the remainder r is not positive; that is, r D 0. This implies m j a. �

Corollary 4.2.2. An integer is linear combination of a and b iff it is a multiple of
gcd.a; b/.

Proof. By (4.3), every linear combination of a and b is a multiple of gcd.a; b/.
Conversely, since gcd.a; b/ is a linear combination of a and b, every multiple of
gcd.a; b/ is as well. �

Now we can restate the water jugs lemma in terms of the greatest common divi
sor:

Corollary 4.2.3. Suppose that we have water jugs with capacities a and b. Then
the amount of water in each jug is always a multiple of gcd.a; b/.

For example, there is no way to form 4 gallons using 3- and 6-gallon jugs, be
cause 4 is not a multiple of gcd.3; 6/ D 3.

4.2.2 Properties of the Greatest Common Divisor

We’ll often make use of some basic gcd facts:

Lemma 4.2.4. The following statements about the greatest common divisor hold:

1. Every common divisor of a and b divides gcd.a; b/.

2. gcd.ka; kb/ D k � gcd.a; b/ for all k > 0.

3. If gcd.a; b/ D 1 and gcd.a; c/ D 1, then gcd.a; bc/ D 1.

4. If a j bc and gcd.a; b/ D 1, then a j c.

5. gcd.a; b/ D gcd.b; rem.a; b//.

Here’s the trick to proving these statements: translate the gcd world to the linear
combination world using Theorem 4.2.1, argue about linear combinations, and then
translate back using Theorem 4.2.1 again.

� �

“mcs-ftl” — 2010/9/8 — 0:40 — page 89 — #95

4.2. The Greatest Common Divisor 89

Proof. We prove only parts 3. and 4.
Proof of 3. The assumptions together with Theorem 4.2.1 imply that there exist

integers s, t , u, and v such that:

sa C tb D 1

ua C vc D 1

Multiplying these two equations gives:

.sa C tb/.ua C vc/ D 1

The left side can be rewritten as a � .asu C btu C csv/ C bc.tv/. This is a linear
combination of a and bc that is equal to 1, so gcd.a; bc/ D 1 by Theorem 4.2.1.

Proof of 4. Theorem 4.2.1 says that gcd.ac; bc/ is equal to a linear combination
of ac and bc. Now a j ac trivially and a j bc by assumption. Therefore, a divides
every linear combination of ac and bc. In particular, a divides gcd.ac; bc/ D
c � gcd.a; b/ D c � 1 D c. The first equality uses part 2. of this lemma, and the
second uses the assumption that gcd.a; b/ D 1. �

4.2.3 Euclid’s Algorithm

Part (5) of Lemma 4.2.4 is useful for quickly computing the greatest common divi
sor of two numbers. For example, we could compute the greatest common divisor
of 1147 and 899 by repeatedly applying part (5):

gcd.1147; 899/ D gcd 899; rem.1147; 899/ „ ƒ‚ … � D248 �
D gcd 248; rem.899; 248/ „ ƒ‚ … � D155 �
D gcd 155; rem.248; 155/ „ ƒ‚ … � D93 �
D gcd 93; rem.155; 93/ „ ƒ‚ … � D62 �
D gcd 62; rem.93; 62/ „ ƒ‚ … � D31 �
D gcd 31; rem.62; 31/ „ ƒ‚ …

D0

D gcd.31; 0/

D 31

90

“mcs-ftl” — 2010/9/8 — 0:40 — page 90 — #96

Chapter 4 Number Theory

The last equation might look wrong, but 31 is a divisor of both 31 and 0 since every
integer divides 0.

This process is called Euclid’s algorithm and it was discovered by the Greeks
over 3000 years ago. You can prove that the algorithm always eventually terminates
by using induction and the fact that the numbers in each step keep getting smaller
until the remainder is 0, whereupon you have computed the GCD. In fact, the
numbers are getting smaller quickly (by at least a factor of 2 every two steps) and so
Euler’s Algorithm is quite fast. The fact that Euclid’s Algorithm actually produces
the GCD (and not something different) can also be proved by an inductive invariant
argument.

The calculation that gcd.1147; 899/ D 31 together with Corollary 4.2.3 implies
that there is no way to measure out 2 gallons of water using jugs with capacities
1147 and 899, since we can only obtain multiples of 31 gallons with these jugs.
This is good news—Bruce won’t even survive Die Hard 6!

But what about Die Hard 5? Is it possible for Bruce to make 3 gallons using 21
and 26-gallon jugs? Using Euclid’s algorithm:

gcd.26; 21/ D gcd.21; 5/ D gcd.5; 1/ D 1:

Since 3 is a multiple of 1, so we can’t rule out the possibility that 3 gallons can be
formed. On the other hand, we don’t know if it can be done either. To resolve the
matter, we will need more number theory.

4.2.4 One Solution for All Water Jug Problems

Corollary 4.2.2 says that 3 can be written as a linear combination of 21 and 26,
since 3 is a multiple of gcd.21; 26/ D 1. In other words, there exist integers s and
t such that:

3 D s � 21 C t � 26

We don’t know what the coefficients s and t are, but we do know that they exist.
Now the coefficient s could be either positive or negative. However, we can

readily transform this linear combination into an equivalent linear combination

3 D s0
� 21 C t 0

� 26 (4.4)

where the coefficient s0 is positive. The trick is to notice that if we increase s by
26 in the original equation and decrease t by 21, then the value of the expression
s � 21 C t � 26 is unchanged overall. Thus, by repeatedly increasing the value of s
(by 26 at a time) and decreasing the value of t (by 21 at a time), we get a linear
combination s0 � 21 C t 0 � 26 D 3 where the coefficient s0 is positive. Notice that
then t 0 must be negative; otherwise, this expression would be much greater than 3.

91

“mcs-ftl” — 2010/9/8 — 0:40 — page 91 — #97

4.2. The Greatest Common Divisor

Now we can form 3 gallons using jugs with capacities 21 and 26: We simply
repeat the following steps s0 times:

1. Fill the 21-gallon jug.

2. Pour all the water in the 21-gallon jug into the 26-gallon jug. If at any time
the 26-gallon jug becomes full, empty it out, and continue pouring the 21
gallon jug into the 26-gallon jug.

At the end of this process, we must have have emptied the 26-gallon jug exactly
jt 0j times. Here’s why: we’ve taken s0 � 21 gallons of water from the fountain, and
we’ve poured out some multiple of 26 gallons. If we emptied fewer than jt 0j times,
then by (4.4), the big jug would be left with at least 3 C 26 gallons, which is more
than it can hold; if we emptied it more times, the big jug would be left containing
at most 3 �26 gallons, which is nonsense. But once we have emptied the 26-gallon
jug exactly jt 0j times, equation (4.4) implies that there are exactly 3 gallons left.

Remarkably, we don’t even need to know the coefficients s0 and t 0 in order to
use this strategy! Instead of repeating the outer loop s0 times, we could just repeat
until we obtain 3 gallons, since that must happen eventually. Of course, we have to
keep track of the amounts in the two jugs so we know when we’re done. Here’s the

92

“mcs-ftl” — 2010/9/8 — 0:40 — page 92 — #98

Chapter 4 Number Theory

solution that approach gives:

fill 21 pour 21 into 26
.0; 0/ ���! .21; 0/ ���������! .0; 21/

fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 21/ ���������! .16; 26/ �����! .16; 0/ ���������! .0; 16/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 16/ ���������! .11; 26/ �����! .11; 0/ ���������! .0; 11/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 11/ ���������! .6; 26/ �����! .6; 0/ ���������! .0; 6/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 6/ ���������! .1; 26/ �����! .1; 0/ ���������! .0; 1/
fill 21 pour 21 into 26
���! .21; 1/ ���������! .0; 22/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 22/ ���������! .17; 26/ �����! .17; 0/ ���������! .0; 17/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 17/ ���������! .12; 26/ �����! .12; 0/ ���������! .0; 12/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 12/ ���������! .7; 26/ �����! .7; 0/ ���������! .0; 7/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 7/ ���������! .2; 26/ �����! .2; 0/ ���������! .0; 2/
fill 21 pour 21 into 26
���! .21; 2/ ���������! .0; 23/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 23/ ���������! .18; 26/ �����! .18; 0/ ���������! .0; 18/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 18/ ���������! .13; 26/ �����! .13; 0/ ���������! .0; 13/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 13/ ���������! .8; 26/ �����! .8; 0/ ���������! .0; 8/
fill 21 pour 21 into 26 empty 26 pour 21 into 26
���! .21; 8/ ���������! .3; 26/ �����! .3; 0/ ���������! .0; 3/

The same approach works regardless of the jug capacities and even regardless
the amount we’re trying to produce! Simply repeat these two steps until the desired
amount of water is obtained:

1. Fill the smaller jug.

2. Pour all the water in the smaller jug into the larger jug. If at any time the
larger jug becomes full, empty it out, and continue pouring the smaller jug
into the larger jug.

By the same reasoning as before, this method eventually generates every multiple
of the greatest common divisor of the jug capacities—all the quantities we can
possibly produce. No ingenuity is needed at all!

4.2.5 The Pulverizer

We have shown that no matter which pair of numbers a and b we are given, there
is always a pair of integer coefficients s and t such that

gcd.a; b/ D sa C tb:

93

“mcs-ftl” — 2010/9/8 — 0:40 — page 93 — #99

4.2. The Greatest Common Divisor

Unfortunately, the proof was nonconstructive: it didn’t suggest a way for finding
such s and t . That job is tackled by a mathematical tool that dates to sixth-century
India, where it was called kuttak, which means “The Pulverizer”. Today, the Pul
verizer is more commonly known as “the extended Euclidean GCD algorithm”,
because it is so close to Euclid’s Algorithm.

Euclid’s Algorithm for finding the GCD of two numbers relies on repeated ap
plication of the equation:

gcd.a; b/ D gcd.b; rem.a; b; //:

For example, we can compute the GCD of 259 and 70 as follows:

gcd.259; 70/ D gcd.70; 49/ since rem.259; 70/ D 49

D gcd.49; 21/ since rem.70; 49/ D 21

D gcd.21; 7/ since rem.49; 21/ D 7

D gcd.7; 0/ since rem.21; 7/ D 0

D 7:

The Pulverizer goes through the same steps, but requires some extra bookkeeping
along the way: as we compute gcd.a; b/, we keep track of how to write each of
the remainders (49, 21, and 7, in the example) as a linear combination of a and b
(this is worthwhile, because our objective is to write the last nonzero remainder,
which is the GCD, as such a linear combination). For our example, here is this
extra bookkeeping:

x y .rem.x; y// D x � q � y
259 70 49 D 259 � 3 � 70

70 49 21 D 70 � 1 � 49

D 70 � 1 � .259 � 3 � 70/

D �1 � 259 C 4 � 70

49 21 7 D 49 � 2 � 21

D .259 � 3 � 70/ � 2 � .�1 � 259 C 4 � 70/

3 � 259 � 11 � 70D

21 7 0

We began by initializing two variables, x D a and y D b. In the first two columns
above, we carried out Euclid’s algorithm. At each step, we computed rem.x; y/,
which can be written in the form x �q �y. (Remember that the Division Algorithm
says x D q � y C r , where r is the remainder. We get r D x � q � y by rearranging
terms.) Then we replaced x and y in this equation with equivalent linear combina
tions of a and b, which we already had computed. After simplifying, we were left

94

“mcs-ftl” — 2010/9/8 — 0:40 — page 94 — #100

Chapter 4 Number Theory

with a linear combination of a and b that was equal to the remainder as desired.
The final solution is boxed.

You can prove that the Pulverizer always works and that it terminates by using
induction. Indeed, you can “pulverize” very large numbers very quickly by using
this algorithm. As we will soon see, its speed makes the Pulverizer a very useful
tool in the field of cryptography.

4.3 The Fundamental Theorem of Arithmetic

We now have almost enough tools to prove something that you probably already
know.

Theorem 4.3.1 (Fundamental Theorem of Arithmetic). Every positive integer n
can be written in a unique way as a product of primes:

.p1 � p2 �n D p1 � p2 � � �pj � � � � pj /

Notice that the theorem would be false if 1 were considered a prime; for example,
15 could be written as 3 � 5 or 1 � 3 � 5 or 12 � 3 � 5. Also, we’re relying on a standard
convention: the product of an empty set of numbers is defined to be 1, much as the
sum of an empty set of numbers is defined to be 0. Without this convention, the
theorem would be false for n D 1.

There is a certain wonder in the Fundamental Theorem, even if you’ve known it
since you were in a crib. Primes show up erratically in the sequence of integers. In
fact, their distribution seems almost random:

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; : : :

Basic questions about this sequence have stumped humanity for centuries. And yet
we know that every natural number can be built up from primes in exactly one way.
These quirky numbers are the building blocks for the integers.

The Fundamental Theorem is not hard to prove, but we’ll need a couple of pre
liminary facts.

Lemma 4.3.2. If p is a prime and p j ab, then p j a or p j b.

Proof. The greatest common divisor of a and p must be either 1 or p, since these
are the only positive divisors of p. If gcd.a; p/ D p, then the claim holds, be
cause a is a multiple of p. Otherwise, gcd.a; p/ D 1 and so p j b by part (4) of
Lemma 4.2.4. �

95

“mcs-ftl” — 2010/9/8 — 0:40 — page 95 — #101

4.3. The Fundamental Theorem of Arithmetic

The Prime Number Theorem
Let �.x/ denote the number of primes less than or equal to x. For example,
�.10/ D 4 because 2, 3, 5, and 7 are the primes less than or equal to 10. Primes
are very irregularly distributed, so the growth of � is similarly erratic. However,
the Prime Number Theorem gives an approximate answer:

�.x/
lim D 1

x!1 x= ln x

Thus, primes gradually taper off. As a rule of thumb, about 1 integer out of every
ln x in the vicinity of x is a prime.
The Prime Number Theorem was conjectured by Legendre in 1798 and proved a
century later by de la Vallee Poussin and Hadamard in 1896. However, after his
death, a notebook of Gauss was found to contain the same conjecture, which he
apparently made in 1791 at age 15. (You sort of have to feel sorry for all the oth
erwise “great” mathematicians who had the misfortune of being contemporaries
of Gauss.)

In late 2004 a billboard appeared in various locations around the country: � �
first 10-digit prime found . com
in consecutive digits of e

Substituting the correct number for the expression in curly-braces produced the
URL for a Google employment page. The idea was that Google was interested in
hiring the sort of people that could and would solve such a problem.
How hard is this problem? Would you have to look through thousands or millions
or billions of digits of e to find a 10-digit prime? The rule of thumb derived from
the Prime Number Theorem says that among 10-digit numbers, about 1 in

ln 1010
� 23

is prime. This suggests that the problem isn’t really so hard! Sure enough, the
first 10-digit prime in consecutive digits of e appears quite early:

e D2:718281828459045235360287471352662497757247093699959574966

9676277240766303535475945713821785251664274274663919320030

599218174135966290435729003342952605956307381323286279434 : : :

96

“mcs-ftl” — 2010/9/8 — 0:40 — page 96 — #102

Chapter 4 Number Theory

A routine induction argument extends this statement to:

Lemma 4.3.3. Let p be a prime. If p j a1a2 � � � an, then p divides some ai .

Now we’re ready to prove the Fundamental Theorem of Arithmetic.

Proof. Theorem 3.1.2 showed, using the Well Ordering Principle, that every posi
tive integer can be expressed as a product of primes. So we just have to prove this
expression is unique. We will use Well Ordering to prove this too.

The proof is by contradiction: assume, contrary to the claim, that there exist
positive integers that can be written as products of primes in more than one way.
By the Well Ordering Principle, there is a smallest integer with this property. Call
this integer n, and let

n D p1 � p2 � � �pj

D q1 � q2 � � � qk

be two of the (possibly many) ways to write n as a product of primes. Then p1 j n
and so p1 j q1q2 � � � qk . Lemma 4.3.3 implies that p1 divides one of the primes qi .
But since qi is a prime, it must be that p1 D qi . Deleting p1 from the first product
and qi from the second, we find that n=p1 is a positive integer smaller than n that
can also be written as a product of primes in two distinct ways. But this contradicts
the definition of n as the smallest such positive integer. �

4.4 Alan Turing

The man pictured in Figure 4.1 is Alan Turing, the most important figure in the
history of computer science. For decades, his fascinating life story was shrouded
by government secrecy, societal taboo, and even his own deceptions.

At age 24, Turing wrote a paper entitled On Computable Numbers, with an Ap
plication to the Entscheidungsproblem. The crux of the paper was an elegant way
to model a computer in mathematical terms. This was a breakthrough, because it
allowed the tools of mathematics to be brought to bear on questions of computation.
For example, with his model in hand, Turing immediately proved that there exist
problems that no computer can solve—no matter how ingenious the programmer.
Turing’s paper is all the more remarkable because he wrote it in 1936, a full decade
before any electronic computer actually existed.

The word “Entscheidungsproblem” in the title refers to one of the 28 mathemat
ical problems posed by David Hilbert in 1900 as challenges to mathematicians of

97

“mcs-ftl” — 2010/9/8 — 0:40 — page 97 — #103

4.4. Alan Turing

the 20th century. Turing knocked that one off in the same paper. And perhaps
you’ve heard of the “Church-Turing thesis”? Same paper. So Turing was obviously
a brilliant guy who generated lots of amazing ideas. But this lecture is about one of
Turing’s less-amazing ideas. It involved codes. It involved number theory. And it
was sort of stupid.

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf
Hitler, world-shattering war looked imminent, and—like us—Alan Turing was pon
dering the usefulness of number theory. He foresaw that preserving military secrets
would be vital in the coming conflict and proposed a way to encrypt communica
tions using number theory. This is an idea that has ricocheted up to our own time.
Today, number theory is the basis for numerous public-key cryptosystems, digital
signature schemes, cryptographic hash functions, and electronic payment systems.
Furthermore, military funding agencies are among the biggest investors in crypto
graphic research. Sorry Hardy!

Soon after devising his code, Turing disappeared from public view, and half a
century would pass before the world learned the full story of where he’d gone and
what he did there. We’ll come back to Turing’s life in a little while; for now, let’s
investigate the code Turing left behind. The details are uncertain, since he never
formally published the idea, so we’ll consider a couple of possibilities.

Photograph of Alan Turing removed due to copyright restrictions.
Please see: http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg

http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg

98

“mcs-ftl” — 2010/9/8 — 0:40 — page 98 — #104

Chapter 4 Number Theory

4.4.1 Turing’s Code (Version 1.0)

The first challenge is to translate a text message into an integer so we can perform
mathematical operations on it. This step is not intended to make a message harder
to read, so the details are not too important. Here is one approach: replace each
letter of the message with two digits (A D 01, B D 02, C D 03, etc.) and string all
the digits together to form one huge number. For example, the message “victory”
could be translated this way:

“v i c t o r y”
! 22 09 03 20 15 18 25

Turing’s code requires the message to be a prime number, so we may need to pad
the result with a few more digits to make a prime. In this case, appending the digits
13 gives the number 2209032015182513, which is prime.

Here is how the encryption process works. In the description below, m is the
unencoded message (which we want to keep secret), m� is the encrypted message
(which the Nazis may intercept), and k is the key.

Beforehand The sender and receiver agree on a secret key, which is a large prime
k.

Encryption The sender encrypts the message m by computing:

m�
D m � k

Decryption The receiver decrypts m� by computing:

m� m � k
mD D

k k

For example, suppose that the secret key is the prime number k D 22801763489
and the message m is “victory”. Then the encrypted message is:

m�
D m � k

D 2209032015182513 � 22801763489

D 50369825549820718594667857

There are a couple of questions that one might naturally ask about Turing’s code.

1. How can the sender and receiver ensure that m and k are prime numbers, as
required?

“mcs-ftl” — 2010/9/8 — 0:40 — page 99 — #105

4.4. Alan Turing 99

The general problem of determining whether a large number is prime or com
posite has been studied for centuries, and reasonably good primality tests
were known even in Turing’s time. In 2002, Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena announced a primality test that is guaranteed to
work on a number n in about .log n/12 steps, that is, a number of steps
bounded by a twelfth degree polynomial in the length (in bits) of the in
put, n. This definitively places primality testing way below the problems
of exponential difficulty. Amazingly, the description of their breakthrough
algorithm was only thirteen lines long!

Of course, a twelfth degree polynomial grows pretty fast, so the Agrawal, et
al. procedure is of no practical use. Still, good ideas have a way of breeding
more good ideas, so there’s certainly hope that further improvements will
lead to a procedure that is useful in practice. But the truth is, there’s no
practical need to improve it, since very efficient probabilistic procedures for
prime-testing have been known since the early 1970’s. These procedures
have some probability of giving a wrong answer, but their probability of
being wrong is so tiny that relying on their answers is the best bet you’ll ever
make.

2. Is Turing’s code secure?

The Nazis see only the encrypted message m� D m � k, so recovering the
original message m requires factoring m�. Despite immense efforts, no re
ally efficient factoring algorithm has ever been found. It appears to be a
fundamentally difficult problem, though a breakthrough someday is not im
possible. In effect, Turing’s code puts to practical use his discovery that
there are limits to the power of computation. Thus, provided m and k are
sufficiently large, the Nazis seem to be out of luck!

This all sounds promising, but there is a major flaw in Turing’s code.

4.4.2 Breaking Turing’s Code

Let’s consider what happens when the sender transmits a second message using
Turing’s code and the same key. This gives the Nazis two encrypted messages to
look at:

m1
�
D m1 � k and m2

�
D m2 � k

The greatest common divisor of the two encrypted messages, m�
1 and m�

2 , is the
secret key k. And, as we’ve seen, the GCD of two numbers can be computed very
efficiently. So after the second message is sent, the Nazis can recover the secret key
and read every message!

100

“mcs-ftl” — 2010/9/8 — 0:40 — page 100 — #106

Chapter 4 Number Theory

It is difficult to believe a mathematician as brilliant as Turing could overlook
such a glaring problem. One possible explanation is that he had a slightly different
system in mind, one based on modular arithmetic.

4.5 Modular Arithmetic

On page 1 of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss
introduced the notion of “congruence”. Now, Gauss is another guy who managed
to cough up a half-decent idea every now and then, so let’s take a look at this one.
Gauss said that a is congruent to b modulo n iff n j .a � b/. This is written

a � b .mod n/:

For example:
29 � 15 .mod 7/ because 7 j .29 � 15/:

There is a close connection between congruences and remainders:

Lemma 4.5.1 (Congruences and Remainders).

a � b .mod n/ iff rem.a; n/ D rem.b; n/:

Proof. By the Division Theorem, there exist unique pairs of integers q1; r1 and
q2; r2 such that:

a D q1n C r1 where 0 � r1 < n;

b D q2n C r2 where 0 � r2 < n:

Subtracting the second equation from the first gives:

a � b D .q1 � q2/n C .r1 � r2/ where �n < r1 � r2 < n:

Now a � b .mod n/ if and only if n divides the left side. This is true if and only
if n divides the right side, which holds if and only if r1 � r2 is a multiple of n.
Given the bounds on r1 � r2, this happens precisely when r1 D r2, that is, when
rem.a; n/ D rem.b; n/. �

So we can also see that

29 � 15 .mod 7/ because rem.29; 7/ D 1 D rem.15; 7/:

101

“mcs-ftl” — 2010/9/8 — 0:40 — page 101 — #107

4.5. Modular Arithmetic

This formulation explains why the congruence relation has properties like an equal
ity relation. Notice that even though (mod 7) appears over on the right side, the �
symbol, it isn’t any more strongly associated with the 15 than with the 29. It would
really be clearer to write 29 � mod 7 15 for example, but the notation with the
modulus at the end is firmly entrenched and we’ll stick to it.

We’ll make frequent use of the following immediate Corollary of Lemma 4.5.1:

Corollary 4.5.2.
a � rem.a; n/ .mod n/

Still another way to think about congruence modulo n is that it defines a partition
of the integers into n sets so that congruent numbers are all in the same set. For
example, suppose that we’re working modulo 3. Then we can partition the integers
into 3 sets as follows:

f : : : ; �6; �3; 0; 3; 6; 9; : : : g
f : : : ; �5; �2; 1; 4; 7; 10; : : : g
f : : : ; �4; �1; 2; 5; 8; 11; : : : g

according to whether their remainders on division by 3 are 0, 1, or 2. The upshot
is that when arithmetic is done modulo n there are really only n different kinds
of numbers to worry about, because there are only n possible remainders. In this
sense, modular arithmetic is a simplification of ordinary arithmetic and thus is a
good reasoning tool.

There are many useful facts about congruences, some of which are listed in the
lemma below. The overall theme is that congruences work a lot like equations,
though there are a couple of exceptions.

Lemma 4.5.3 (Facts About Congruences). The following hold for n � 1:

1. a � a .mod n/

2. a � b .mod n/ implies b � a .mod n/

3. a � b .mod n/ and b � c .mod n/ implies a � c .mod n/

4. a � b .mod n/ implies a C c � b C c .mod n/

5. a � b .mod n/ implies ac � bc .mod n/

6. a � b .mod n/ and c � d .mod n/ imply a C c � b C d .mod n/

7. a � b .mod n/ and c � d .mod n/ imply ac � bd .mod n/

102

“mcs-ftl” — 2010/9/8 — 0:40 — page 102 — #108

Chapter 4 Number Theory

Proof. Parts 1–3. follow immediately from Lemma 4.5.1. Part 4. follows imme
diately from the definition that a � b .mod n/ iff n j .a � b/. Likewise, part 5.
follows because if n j .a � b/ then it divides .a � b/c D ac � bc. To prove part 6.,
assume

a � b .mod n/ (4.5)

and
c � d .mod n/: (4.6)

Then

a C c � b C c .mod n/ (by part 4. and (4.5)/;

c C b � d C b .mod n/ (by part 4. and (4.6)), so

b C c � b C d .mod n/ and therefore

a C c � b C d .mod n/ (by part 3.)

Part 7 has a similar proof. �

4.5.1 Turing’s Code (Version 2.0)

In 1940, France had fallen before Hitler’s army, and Britain stood alone against
the Nazis in western Europe. British resistance depended on a steady flow of sup
plies brought across the north Atlantic from the United States by convoys of ships.
These convoys were engaged in a cat-and-mouse game with German “U-boats”—
submarines—which prowled the Atlantic, trying to sink supply ships and starve
Britain into submission. The outcome of this struggle pivoted on a balance of in
formation: could the Germans locate convoys better than the Allies could locate
U-boats or vice versa?

Germany lost.
But a critical reason behind Germany’s loss was made public only in 1974: Ger

many’s naval code, Enigma, had been broken by the Polish Cipher Bureau (see
http://en.wikipedia.org/wiki/Polish_Cipher_Bureau) and the
secret had been turned over to the British a few weeks before the Nazi invasion of
Poland in 1939. Throughout much of the war, the Allies were able to route con
voys around German submarines by listening in to German communications. The
British government didn’t explain how Enigma was broken until 1996. When it
was finally released (by the US), the story revealed that Alan Turing had joined the
secret British codebreaking effort at Bletchley Park in 1939, where he became the
lead developer of methods for rapid, bulk decryption of German Enigma messages.
Turing’s Enigma deciphering was an invaluable contribution to the Allied victory
over Hitler.

http://en.wikipedia.org/wiki/Polish_Cipher_Bureau
http://en.wikipedia.org/wiki/Polish_Cipher_Bureau

103

“mcs-ftl” — 2010/9/8 — 0:40 — page 103 — #109

4.6. Arithmetic with a Prime Modulus

Governments are always tight-lipped about cryptography, but the half-century of
official silence about Turing’s role in breaking Enigma and saving Britain may be
related to some disturbing events after the war. More on that later. Let’s get back to
number theory and consider an alternative interpretation of Turing’s code. Perhaps
we had the basic idea right (multiply the message by the key), but erred in using
conventional arithmetic instead of modular arithmetic. Maybe this is what Turing
meant:

Beforehand The sender and receiver agree on a large prime p, which may be made
public. (This will be the modulus for all our arithmetic.) They also agree on
a secret key k 2 f1; 2; : : : ; p � 1g.

Encryption The message m can be any integer in the set f0; 1; 2; : : : ; p � 1g; in
particular, the message is no longer required to be a prime. The sender en
crypts the message m to produce m� by computing:

m�
D rem.mk; p/ (4.7)

Decryption (Uh-oh.)

The decryption step is a problem. We might hope to decrypt in the same way as
before: by dividing the encrypted message m� by the key k. The difficulty is that
m� is the remainder when mk is divided by p. So dividing m� by k might not even
give us an integer!

This decoding difficulty can be overcome with a better understanding of arith
metic modulo a prime.

4.6 Arithmetic with a Prime Modulus

4.6.1 Multiplicative Inverses

The multiplicative inverse of a number x is another number x�1 such that:

x � x�1
D 1

Generally, multiplicative inverses exist over the real numbers. For example, the
multiplicative inverse of 3 is 1=3 since:

1
3 � D 1

3

The sole exception is that 0 does not have an inverse.

“mcs-ftl” — 2010/9/8 — 0:40 — page 104 — #110

104 Chapter 4 Number Theory

On the other hand, inverses generally do not exist over the integers. For example,
7 can not be multiplied by another integer to give 1.

Surprisingly, multiplicative inverses do exist when we’re working modulo a prime
number. For example, if we’re working modulo 5, then 3 is a multiplicative inverse
of 7, since:

7 � 3 � 1 .mod 5/

(All numbers congruent to 3 modulo 5 are also multiplicative inverses of 7; for
example, 7 �8 � 1 .mod 5/ as well.) The only exception is that numbers congruent
to 0 modulo 5 (that is, the multiples of 5) do not have inverses, much as 0 does not
have an inverse over the real numbers. Let’s prove this.

Lemma 4.6.1. If p is prime and k is not a multiple of p, then k has a multiplicative
inverse modulo p.

Proof. Since p is prime, it has only two divisors: 1 and p. And since k is not a mul
tiple of p, we must have gcd.p; k/ D 1. Therefore, there is a linear combination of
p and k equal to 1:

sp C tk D 1

Rearranging terms gives:
sp D 1 � tk

This implies that p j .1 � tk/ by the definition of divisibility, and therefore tk � 1
.mod p/ by the definition of congruence. Thus, t is a multiplicative inverse of
k. �

Multiplicative inverses are the key to decryption in Turing’s code. Specifically,
we can recover the original message by multiplying the encoded message by the
inverse of the key:

m�
� k�1

D rem.mk; p/ � k�1 (the def. (4.7) of m�)

� .mk/k�1 .mod p/ (by Cor. 4.5.2)

� m .mod p/:

This shows that m�k�1 is congruent to the original message m. Since m was in
the range 0; 1; : : : ; p � 1, we can recover it exactly by taking a remainder:

m D rem.m�k�1; p/:

So all we need to decrypt the message is to find a value of k�1. From the proof of
Lemma 4.6.1, we know that t is such a value, where sp C tk D 1. Finding t is easy
using the Pulverizer.

“mcs-ftl” — 2010/9/8 — 0:40 — page 105 — #111

4.6. Arithmetic with a Prime Modulus 105

4.6.2 Cancellation

Another sense in which real numbers are nice is that one can cancel multiplicative
terms. In other words, if we know that m1k D m2k, then we can cancel the k’s
and conclude that m1 D m2, provided k ¤ 0. In general, cancellation is not valid
in modular arithmetic. For example,

2 � 3 � 4 � 3 .mod 6/;

but canceling the 3’s leads to the false conclusion that 2 � 4 .mod 6/. The fact
that multiplicative terms can not be canceled is the most significant sense in which
congruences differ from ordinary equations. However, this difference goes away if
we’re working modulo a prime; then cancellation is valid.

Lemma 4.6.2. Suppose p is a prime and k is not a multiple of p. Then

ak � bk .mod p/ IMPLIES a � b .mod p/:

Proof. Multiply both sides of the congruence by k�1 . �

We can use this lemma to get a bit more insight into how Turing’s code works.
In particular, the encryption operation in Turing’s code permutes the set of possible
messages. This is stated more precisely in the following corollary.

Corollary 4.6.3. Suppose p is a prime and k is not a multiple of p. Then the
sequence:

rem..1 � k/; p/; rem..2 � k/; p/; : : : ; rem...p � 1/ � k/ ; p/

is a permutation4 of the sequence:

1; 2; : : : ; .p � 1/:

Proof. The sequence of remainders contains p � 1 numbers. Since i � k is not
divisible by p for i D 1; : : : p � 1, all these remainders are in the range 1 to p � 1
by the definition of remainder. Furthermore, the remainders are all different: no
two numbers in the range 1 to p �1 are congruent modulo p, and by Lemma 4.6.2,
i � k � j � k .mod p/ if and only if i � j .mod p/. Thus, the sequence of
remainders must contain all of the numbers from 1 to p � 1 in some order. �

4A permutation of a sequence of elements is a reordering of the elements.

106

“mcs-ftl” — 2010/9/8 — 0:40 — page 106 — #112

Chapter 4 Number Theory

For example, suppose p D 5 and k D 3. Then the sequence:

rem..1 � 3/; 5/ ; rem..2 � 3/; 5/ ; rem..3 � 3/; 5/ ; rem..4 � 3/; 5/ „ ƒ‚ … „ ƒ‚ … „ ƒ‚ … „ ƒ‚ …
D3 D1 D4 D2

is a permutation of 1, 2, 3, 4. As long as the Nazis don’t know the secret key k,
they don’t know how the set of possible messages are permuted by the process of
encryption and thus they can’t read encoded messages.

4.6.3 Fermat’s Little Theorem

An alternative approach to finding the inverse of the secret key k in Turing’s code
(about equally efficient and probably more memorable) is to rely on Fermat’s Little
Theorem, which is much easier than his famous Last Theorem.

Theorem 4.6.4 (Fermat’s Little Theorem). Suppose p is a prime and k is not a
multiple of p. Then:

kp�1
� 1 .mod p/

Proof. We reason as follows:

.p � 1/Š WWD 1 � 2 � � � .p � 1/

D rem.k; p/ � rem.2k; p/ � � � rem..p � 1/k; p/ (by Cor 4.6.3)

� k � 2k � � � .p � 1/k .mod p/ (by Cor 4.5.2)

� .p � 1/Š � kp�1 .mod p/ (rearranging terms)

Now .p � 1/Š is not a multiple of p because the prime factorizations of 1; 2; : : : ,
.p � 1/ contain only primes smaller than p. So by Lemma 4.6.2, we can cancel
.p � 1/Š from the first and last expressions, which proves the claim. �

Here is how we can find inverses using Fermat’s Theorem. Suppose p is a prime
and k is not a multiple of p. Then, by Fermat’s Theorem, we know that:

kp�2
� k � 1 .mod p/

Therefore, kp�2 must be a multiplicative inverse of k. For example, suppose that
we want the multiplicative inverse of 6 modulo 17. Then we need to compute
rem.615; 17/, which we can do by successive squaring. All the congruences below

“mcs-ftl” — 2010/9/8 — 0:40 — page 107 — #113

4.6. Arithmetic with a Prime Modulus 107

hold modulo 17.

62
� 36 � 2

64
� .62/2

� 22
� 4

68
� .64/2

� 42
� 16

615
� 68

� 64
� 62
� 6 � 16 � 4 � 2 � 6 � 3

Therefore, rem.615; 17/ D 3. Sure enough, 3 is the multiplicative inverse of 6
modulo 17, since:

3 � 6 � 1 .mod 17/

In general, if we were working modulo a prime p, finding a multiplicative in
verse by trying every value between 1 and p � 1 would require about p operations.
However, the approach above requires only about 2 log p operations, which is far
better when p is large.

4.6.4 Breaking Turing’s Code—Again

The Germans didn’t bother to encrypt their weather reports with the highly-secure
Enigma system. After all, so what if the Allies learned that there was rain off the
south coast of Iceland? But, amazingly, this practice provided the British with a
critical edge in the Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally been trans
mitted using Enigma from U-boats out in the Atlantic. Thus, the British obtained
both unencrypted reports and the same reports encrypted with Enigma. By com
paring the two, the British were able to determine which key the Germans were
using that day and could read all other Enigma-encoded traffic. Today, this would
be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Sup
pose that the Nazis know both m and m� where:

m�
� mk .mod p/

Now they can compute:

mp�2
�m�
D mp�2

� rem.mk; p/ (def. (4.7) of m�)

� mp�2
�mk .mod p/ (by Cor 4.5.2)

� mp�1
� k .mod p/

� k .mod p/ (Fermat’s Theorem)

Now the Nazis have the secret key k and can decrypt any message!

108

“mcs-ftl” — 2010/9/8 — 0:40 — page 108 — #114

Chapter 4 Number Theory

This is a huge vulnerability, so Turing’s code has no practical value. Fortunately,
Turing got better at cryptography after devising this code; his subsequent decipher
ing of Enigma messages surely saved thousands of lives, if not the whole of Britain.

4.6.5 Turing Postscript

A few years after the war, Turing’s home was robbed. Detectives soon determined
that a former homosexual lover of Turing’s had conspired in the robbery. So they
arrested him—that is, they arrested Alan Turing—because homosexuality was a
British crime punishable by up to two years in prison at that time. Turing was
sentenced to a hormonal “treatment” for his homosexuality: he was given estrogen
injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His
mother explained what happened in a biography of her own son. Despite her re
peated warnings, Turing carried out chemistry experiments in his own home. Ap
parently, her worst fear was realized: by working with potassium cyanide while
eating an apple, he poisoned himself.

However, Turing remained a puzzle to the very end. His mother was a devoutly
religious woman who considered suicide a sin. And, other biographers have pointed
out, Turing had previously discussed committing suicide by eating a poisoned ap
ple. Evidently, Alan Turing, who founded computer science and saved his country,
took his own life in the end, and in just such a way that his mother could believe it
was an accident.

Turing’s last project before he disappeared from public view in 1939 involved the
construction of an elaborate mechanical device to test a mathematical conjecture
called the Riemann Hypothesis. This conjecture first appeared in a sketchy paper
by Bernhard Riemann in 1859 and is now one of the most famous unsolved problem
in mathematics.

4.7 Arithmetic with an Arbitrary Modulus

Turing’s code did not work as he hoped. However, his essential idea—using num
ber theory as the basis for cryptography—succeeded spectacularly in the decades
after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a
highly secure cryptosystem (called RSA) based on number theory. Despite decades
of attack, no significant weakness has been found. Moreover, RSA has a major
advantage over traditional codes: the sender and receiver of an encrypted mes

109

“mcs-ftl” — 2010/9/8 — 0:40 — page 109 — #115

4.7. Arithmetic with an Arbitrary Modulus

The Riemann Hypothesis
The formula for the sum of an infinite geometric series says:

1
x x1 C x C 2
C

3
C � � � D

1 � x

Substituting x D
2
1
s , x D

3
1
s , x D

5
1
s , and so on for each prime number gives a

sequence of equations:

1 1 1 1
1 C

2s
C

22s
C

23s
C � � � D

1 � 1=2s

1 1 1 1
1 C

3s
C

32s
C

33s
C � � � D

1 � 1=3s

1 1 1 1
1 C

5s
C

52s
C

53s
C � � � D

1 � 1=5s

etc.

Multiplying together all the left sides and all the right sides gives:

X1 1 Y �
1

�
nD1

ns
D

p2primes
1 � 1=ps

The sum on the left is obtained by multiplying out all the infinite series and ap
plying the Fundamental Theorem of Arithmetic. For example, the term 1=300s

in the sum is obtained by multiplying 1=22s from the first equation by 1=3s in
the second and 1=52s in the third. Riemann noted that every prime appears in the
expression on the right. So he proposed to learn about the primes by studying
the equivalent, but simpler expression on the left. In particular, he regarded s as
a complex number and the left side as a function, �.s/. Riemann found that the
distribution of primes is related to values of s for which �.s/ D 0, which led to
his famous conjecture:

Definition 4.6.5. The Riemann Hypothesis: Every nontrivial zero of the zeta func
tion �.s/ lies on the line s D 1=2 C ci in the complex plane.

A proof would immediately imply, among other things, a strong form of the Prime
Number Theorem.
Researchers continue to work intensely to settle this conjecture, as they have for
over a century. It is another of the Millennium Problems whose solver will earn
$1,000,000 from the Clay Institute.

http://www.claymath.org/millennium/

110

“mcs-ftl” — 2010/9/8 — 0:40 — page 110 — #116

Chapter 4 Number Theory

sage need not meet beforehand to agree on a secret key. Rather, the receiver has
both a secret key, which she guards closely, and a public key, which she distributes
as widely as possible. The sender then encrypts his message using her widely-
distributed public key. Then she decrypts the received message using her closely-
held private key. The use of such a public key cryptography system allows you
and Amazon, for example, to engage in a secure transaction without meeting up
beforehand in a dark alley to exchange a key.

Interestingly, RSA does not operate modulo a prime, as Turing’s scheme may
have, but rather modulo the product of two large primes. Thus, we’ll need to know a
bit about how arithmetic works modulo a composite number in order to understand
RSA. Arithmetic modulo an arbitrary positive integer is really only a little more
painful than working modulo a prime—though you may think this is like the doctor
saying, “This is only going to hurt a little,” before he jams a big needle in your arm.

4.7.1 Relative Primality

First, we need a new definition. Integers a and b are relatively prime iff gcd.a; b/ D
1. For example, 8 and 15 are relatively prime, since gcd.8; 15/ D 1. Note that,
except for multiples of p, every integer is relatively prime to a prime number p.

Next we’ll need to generalize what we know about arithmetic modulo a prime
to work modulo an arbitrary positive integer n. The basic theme is that arithmetic
modulo n may be complicated, but the integers relatively prime to n remain fairly
well-behaved. For example, the proof of Lemma 4.6.1 of an inverse for k modulo
p extends to an inverse for k relatively prime to n:

Lemma 4.7.1. Let n be a positive integer. If k is relatively prime to n, then there
exists an integer k�1 such that:

k � k�1
� 1 .mod n/

As a consequence of this lemma, we can cancel a multiplicative term from both
sides of a congruence if that term is relatively prime to the modulus:

Corollary 4.7.2. Suppose n is a positive integer and k is relatively prime to n. If

ak � bk .mod n/

then
a � b .mod n/

This holds because we can multiply both sides of the first congruence by k�1

and simplify to obtain the second.
The following lemma is the natural generalization of Corollary 4.6.3.

“mcs-ftl” — 2010/9/8 — 0:40 — page 111 — #117

4.7. Arithmetic with an Arbitrary Modulus 111

Lemma 4.7.3. Suppose n is a positive integer and k is relatively prime to n. Let
k1; : : : ; kr denote all the integers relatively prime to n in the range 1 to n �1. Then
the sequence:

rem.k1 � k; n/; rem.k2 � k; n/; rem.k3 � k; n/; : : : ; rem.kr � k; n/

is a permutation of the sequence:

k1; k2; : : : ; kr :

Proof. We will show that the remainders in the first sequence are all distinct and
are equal to some member of the sequence of kj ’s. Since the two sequences have
the same length, the first must be a permutation of the second.

First, we show that the remainders in the first sequence are all distinct. Suppose
that rem.ki k; n/ D rem.kj k; n/. This is equivalent to ki k � kj k .mod n/, which
implies ki � kj .mod n/ by Corollary 4.7.2. This, in turn, means that ki D kj

since both are between 1 and n � 1. Thus, none of the remainder terms in the first
sequence is equal to any other remainder term.

Next, we show that each remainder in the first sequence equals one of the ki . By
assumption, gcd.ki ; n/ D 1 and gcd.k; n/ D 1, which means that

gcd.n; rem.ki k; n// D gcd.ki k; n/ (by part (5) of Lemma 4.2.4)

D 1 (by part (3) of Lemma 4.2.4):

Since rem.ki k; n/ is in the range from 0 to n � 1 by the definition of remainder,
and since it is relatively prime to n, it must (by definition of the kj ’s) be equal to
some kj . �

4.7.2 Euler’s Theorem

RSA relies heavily on a generalization of Fermat’s Theorem known as Euler’s The
orem. For both theorems, the exponent of k needed to produce an inverse of k mod
ulo n depends on the number of integers in the set f1; 2; : : : ; ng (denoted Œ1; n�) that
are relatively prime to n. This value is known as Euler’s � function (a.k.a. Euler’s
totient function) and it is denoted as �.n/. For example, �.7/ D 6 since 1, 2, 3, 4,
5, and 6 are all relatively prime to 7. Similarly, �.12/ D 4 since 1, 5, 7, and 11 are
the only numbers in Œ1; 12� that are relatively prime to 12.5

If n is prime, then �.n/ D n � 1 since every number less than a prime number
is relatively prime to that prime. When n is composite, however, the � function
gets a little complicated. The following theorem characterizes the � function for

5Recall that gcd.n; n/ D n and so n is never relatively prime to itself.

112

“mcs-ftl” — 2010/9/8 — 0:40 — page 112 — #118

Chapter 4 Number Theory

composite n. We won’t prove the theorem in its full generality, although we will
give a proof for the special case when n is the product of two primes since that is
the case that matters for RSA.

Theorem 4.7.4. For any number n, if p1, p2, . . . , pj are the (distinct) prime factors
of n, then � �� � � �

1 1 1
�.n/ D n 1 � 1 � : : : 1 � :

p1 p2 pj

For example,

�.300/ D �.22
� 3 � 52/ � �� �� �

1 1 1
D 300 1 �

2
1 �

3
1 �

5 � �� �� �
1 2 4

D 300
2 3 5

D 80:

Corollary 4.7.5. Let n D pq where p and q are different primes. Then �.n/ D
.p � 1/.q � 1/.

Corollary 4.7.5 follows easily from Theorem 4.7.4, but since Corollary 4.7.5 is
important to RSA and we have not provided a proof of Theorem 4.7.4, we will give
a direct proof of Corollary 4.7.5 in what follows.

Proof of Corollary 4.7.5. Since p and q are prime, any number that is not relatively
prime to n D pq must be a multiple of p or a multiple of q. Among the numbers 1,
2, . . . , pq, there are precisely q multiples of p and p multiples of q. Since p and q
are relatively prime, the only number in Œ1; pq� that is a multiple of both p and q
is pq. Hence, there are p C q � 1 numbers in Œ1; pq� that are not relatively prime
to n. This means that

�.n/ D pq � p � q C 1

D .p � 1/.q � 1/;

as claimed.6 �

We can now prove Euler’s Theorem:

6This proof provides a brief preview of the kinds of counting arguments that we will explore more
fully in Part III.

113

“mcs-ftl” — 2010/9/8 — 0:40 — page 113 — #119

4.8. The RSA Algorithm

Theorem 4.7.6 (Euler’s Theorem). Suppose n is a positive integer and k is rela
tively prime to n. Then

k�.n/
� 1 .mod n/

Proof. Let k1; : : : ; kr denote all integers relatively prime to n such that 0 � ki < n.
Then r D �.n/, by the definition of the function �. The remainder of the proof
mirrors the proof of Fermat’s Theorem. In particular,

k1 � k2 � � � kr

D rem.k1 � k; n/ � rem.k2 � k; n/ � � � rem.kr � k; n/ (by Lemma 4.7.3)

� .k1 � k/ � .k2 � k/ � � � � .kr � k/ .mod n/ (by Cor 4.5.2)

� .k1 � k2 � � � kr / � k
r .mod n/ (rearranging terms)

Part (3) of Lemma 4.2.4. implies that k1 � k2 � � � kr is relatively prime to n. So by
Corollary 4.7.2, we can cancel this product from the first and last expressions. This
proves the claim. �

We can find multiplicative inverses using Euler’s theorem as we did with Fer-
mat’s theorem: if k is relatively prime to n, then k�.n/�1 is a multiplicative inverse
of k modulo n. However, this approach requires computing �.n/. Computing
�.n/ is easy (using Theorem 4.7.4) if we know the prime factorization of n. Un
fortunately, finding the factors of n can be hard to do when n is large and so the
Pulverizer is often the best approach to computing inverses modulo n.

4.8 The RSA Algorithm

Finally, we are ready to see how the RSA public key encryption scheme works. The
details are in the box on the next page.

It is not immediately clear from the description of the RSA cryptosystem that
the decoding of the encrypted message is, in fact, the original unencrypted mes
sage. In order to check that this is the case, we need to show that the decryption
rem..m0/d ; n/ is indeed equal to the sender’s message m. Since m0 D rem.me; n/,
m0 is congruent to me modulo n by Corollary 4.5.2. That is,

e m0
� m .mod n/:

By raising both sides to the power d , we obtain the congruence

.m0/d
� m ed .mod n/: (4.8)

114

“mcs-ftl” — 2010/9/8 — 0:40 — page 114 — #120

Chapter 4 Number Theory

The RSA Cryptosystem

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and q. Since they can be used to
generate the secret key, they must be kept hidden.

2. Let n D pq.

3. Select an integer e such that gcd.e; .p � 1/.q � 1// D 1.
The public key is the pair .e; n/. This should be distributed widely.

4. Compute d such that de � 1 .mod .p �1/.q �1//. This can be done
using the Pulverizer.
The secret key is the pair .d; n/. This should be kept hidden!

Encoding Given a message m, the sender first checks that gcd.m; n/ D 1. a The
sender then encrypts message m to produce m0 using the public key:

em0
D rem.m ; n/:

Decoding The receiver decrypts message m0 back to message m using the secret
key:

m D rem..m0/d ; n/:

aIt would be very bad if gcd.m; n/ equals p or q since then it would be easy for someone to use
the encoded message to compute the secret key If gcd.m; n/ D n, then the encoded message would
be 0, which is fairly useless. For very large values of n, it is extremely unlikely that gcd.m; n/ ¤ 1.
If this does happen, you should get a new set of keys or, at the very least, add some bits to m so that
the resulting message is relatively prime to n.

115

“mcs-ftl” — 2010/9/8 — 0:40 — page 115 — #121

4.8. The RSA Algorithm

The encryption exponent e and the decryption exponent d are chosen such that
de � 1 .mod .p � 1/.q � 1//. So, there exists an integer r such that ed D
1 C r.p � 1/.q � 1/. By substituting 1 C r.p � 1/.q � 1/ for ed in Equation 4.8,
we obtain

.m0/d
� m �mr.p�1/.q�1/ .mod n/: (4.9)

By Euler’s Theorem and the assumption that gcd.m; n/ D 1, we know that

m�.n/
� 1 .mod n/:

From Corollary 4.7.5, we know that �.n/ D .p � 1/.q � 1/. Hence,

.m0/d
D m �mr.p�1/.q�1/ .mod n/

D m � 1r .mod n/

D m .mod n/:

Hence, the decryption process indeed reproduces the original message m.
Is it hard for someone without the secret key to decrypt the message? No one

knows for sure but it is generally believed that if n is a very large number (say, with
a thousand digits), then it is difficult to reverse engineer d from e and n. Of course,
it is easy to compute d if you know p and q (by using the Pulverizer) but it is not
known how to quickly factor n into p and q when n is very large. Maybe with a
little more studying of number theory, you will be the first to figure out how to do
it. Although, we should warn you that Gauss worked on it for years without a lot to
show for his efforts. And if you do figure it out, you might wind up meeting some
serious-looking fellows in black suits. . . .

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

