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Propositions 
Definition. A proposition is a statement that is either true or false. 

For example, both of the following statements are propositions. The first is true 
and the second is false. 

Proposition 1.0.1. 2 + 3 = 5. 

Proposition 1.0.2. 1 + 1 = 3. 

Being true or false doesn’t sound like much of a limitation, but it does exclude 
statements such as, “Wherefore art thou Romeo?” and “Give me an A!”. 

Unfortunately, it is not always easy to decide if a proposition is true or false, or 
even what the proposition means. In part, this is because the English language is 
riddled with ambiguities. For example, consider the following statements: 

1. “You may have cake, or you may have ice cream.” 

2. “If pigs can fly, then you can understand the Chebyshev bound.” 

3. “If you can solve any problem we come up with, then you get an A for the 
course.” 

4. “Every American has a dream.” 

What precisely do these sentences mean? Can you have both cake and ice cream 
or must you choose just one dessert? If the second sentence is true, then is the 
Chebyshev bound incomprehensible? If you can solve some problems we come up 
with but not all, then do you get an A for the course? And can you still get an A 
even if you can’t solve any of the problems? Does the last sentence imply that all 
Americans have the same dream or might some of them have different dreams? 

Some uncertainty is tolerable in normal conversation. But when we need to 
formulate ideas precisely—as in mathematics and programming—the ambiguities 
inherent in everyday language can be a real problem. We can’t hope to make an 
exact argument if we’re not sure exactly what the statements mean. So before we 
start into mathematics, we need to investigate the problem of how to talk about 
mathematics. 

To get around the ambiguity of English, mathematicians have devised a special 
mini-language for talking about logical relationships. This language mostly uses 
ordinary English words and phrases such as “or”, “implies”, and “for all”. But 
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mathematicians endow these words with definitions more precise than those found 
in an ordinary dictionary. Without knowing these definitions, you might sometimes 
get the gist of statements in this language, but you would regularly get misled about 
what they really meant. 

Surprisingly, in the midst of learning the language of mathematics, we’ll come 
across the most important open problem in computer science—a problem whose 
solution could change the world. 

1.1 Compound Propositions 

In English, we can modify, combine, and relate propositions with words such as 
“not”, “and”, “or”, “implies”, and “if-then”. For example, we can combine three 
propositions into one like this: 

If all humans are mortal and all Greeks are human, then all Greeks are mortal. 

For the next while, we won’t be much concerned with the internals of propositions— 
whether they involve mathematics or Greek mortality—but rather with how propo
sitions are combined and related. So we’ll frequently use variables such as P and 
Q in place of specific propositions such as “All humans are mortal” and “2 C 3 D 
5”. The understanding is that these variables, like propositions, can take on only 
the values T (true) and F (false). Such true/false variables are sometimes called 
Boolean variables after their inventor, George—you guessed it—Boole. 

1.1.1 NOT, AND, and OR 

We can precisely define these special words using truth tables. For example, if 
P denotes an arbitrary proposition, then the truth of the proposition “NOT.P /” is 
defined by the following truth table: 

P NOT.P / 
T F 
F T 

The first row of the table indicates that when proposition P is true, the proposition 
“NOT.P /” is false. The second line indicates that when P is false, “NOT.P /” is 
true. This is probably what you would expect. 

In general, a truth table indicates the true/false value of a proposition for each 
possible setting of the variables. For example, the truth table for the proposition 
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“P AND Q” has four lines, since the two variables can be set in four different ways: 

P Q P AND Q 
T T T 
T F F 
F T F 
F F F 

According to this table, the proposition “P AND Q” is true only when P and Q are 
both true. This is probably the way you think about the word “and.” 

There is a subtlety in the truth table for “P OR Q”: 

P Q P OR Q 
T T T 
T F T 
F T T 
F F F 

The third row of this table says that “P OR Q” is true even if both P and Q are 
true. This isn’t always the intended meaning of “or” in everyday speech, but this is 
the standard definition in mathematical writing. So if a mathematician says, “You 
may have cake, or you may have ice cream,” he means that you could have both. 

If you want to exclude the possibility of both having and eating, you should use 
“exclusive-or” (XOR): 

P Q P XOR Q 
T T F 
T F T 
F T T 
F F F 

1.1.2 IMPLIES 

The least intuitive connecting word is “implies.” Here is its truth table, with the 
lines labeled so we can refer to them later. 

P Q P IMPLIES Q 
T T T (tt) 
T F F (tf) 
F T T (ft) 
F F T (ff) 

Let’s experiment with this definition. For example, is the following proposition 
true or false? 
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“If the Riemann Hypothesis is true, then x2 � 0 for every real number x.” 

The Riemann Hypothesis is a famous unresolved conjecture in mathematics —no 
one knows if it is true or false. But that doesn’t prevent you from answering the 
question! This proposition has the form P IMPLIES Q where the hypothesis, P , is 
“the Riemann Hypothesis is true” and the conclusion, Q, is “x2 � 0 for every real 
number x”. Since the conclusion is definitely true, we’re on either line (tt) or line 
(ft) of the truth table. Either way, the proposition as a while is true! 

One of our original examples demonstrates an even stranger side of implications. 

“If pigs can fly, then you can understand the Chebyshev bound.” 

Don’t take this as an insult; we just need to figure out whether this proposition is 
true or false. Curiously, the answer has nothing to do with whether or not you can 
understand the Chebyshev bound. Pigs cannot fly, so we’re on either line (ft) or 
line (ff) of the truth table. In both cases, the proposition is true! 

In contrast, here’s an example of a false implication: 

“If the moon shines white, then the moon is made of white cheddar.” 

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese. 
So we’re on line (tf) of the truth table, and the proposition is false. 

The truth table for implications can be summarized in words as follows: 

An implication is true exactly when the if-part is false or the then-part is true. 

This sentence is worth remembering; a large fraction of all mathematical statements 
are of the if-then form! 

1.1.3 IFF 

Mathematicians commonly join propositions in one additional way that doesn’t 
arise in ordinary speech. The proposition “P if and only if Q” asserts that P and 
Q are logically equivalent; that is, either both are true or both are false. 

P Q P IFF Q 
T T T 
T F F 
F T F 
F F T 

For example, the following if-and-only-if statement is true for every real number 
x: 

x2 � 4 � 0 iff jxj � 2 

For some values of x, both inequalities are true. For other values of x, neither 
inequality is true . In every case, however, the proposition as a whole is true. 
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1.1.4 Notation 

Mathematicians have devised symbols to represent words like “AND” and “NOT”. 
The most commonly-used symbols are summarized in the table below. 

English Symbolic Notation 

NOT.P / :P (alternatively, P ) 
P AND Q P ^Q 
P OR Q 
P IMPLIES Q 
if P then Q 
P IFF Q 

P _ Q 
P �! Q 
P �! Q 
P ! Q 

For example, using this notation, “If P AND NOT.Q/, then R” would be written: 

.P ^Q/ �! R 

This symbolic language is helpful for writing complicated logical expressions com
pactly. But words such as “OR” and “IMPLIES” generally serve just as well as the 
symbols and �!, and their meaning is easy to remember. We will use the prior _

notation for the most part in this text, but you can feel free to use whichever con
vention is easiest for you. 

1.1.5 Logically Equivalent Implications 

Do these two sentences say the same thing? 

If I am hungry, then I am grumpy. 
If I am not grumpy, then I am not hungry. 

We can settle the issue by recasting both sentences in terms of propositional logic. 
Let P be the proposition “I am hungry”, and let Q be “I am grumpy”. The first 
sentence says “P IMPLIES Q” and the second says “NOT.Q/ IMPLIES NOT.P /”. 
We can compare these two statements in a truth table: 

P Q P IMPLIES Q NOT.Q/ IMPLIES NOT.P / 
T T T T 
T F F F 
F T T T 
F F T T 

Sure enough, the columns of truth values under these two statements are the same, 
which precisely means they are equivalent. In general, “NOT.Q/ IMPLIES NOT.P /” 
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is called the contrapositive of the implication “P IMPLIES Q.” And, as we’ve just 
shown, the two are just different ways of saying the same thing. 

In contrast, the converse of “P IMPLIES Q” is the statement “Q IMPLIES P ”. 
In terms of our example, the converse is: 

If I am grumpy, then I am hungry. 

This sounds like a rather different contention, and a truth table confirms this suspi-

P Q 
T T 
T F 
F T 

cion:

P IMPLIES Q 

T 
F 
T 
T 

Q IMPLIES P 
T 
T 
F 
TF F 

Thus, an implication is logically equivalent to its contrapositive but is not equiva
lent to its converse. 

One final relationship: an implication and its converse together are equivalent to 
an iff statement. For example, 

If I am grumpy, then I am hungry, AND 

if I am hungry, then I am grumpy. 

are equivalent to the single statement: 

I am grumpy IFF I am hungry. 

Once again, we can verify this with a truth table: 

P Q .P IMPLIES Q/ .Q IMPLIES P / .P IMPLIES Q/ AND .Q IMPLIES P / 
T T T T T 
T F F T F 
F T T F F 
F F T T T 

1.2 Propositional Logic in Computer Programs 

Propositions and logical connectives arise all the time in computer programs. For 
example, consider the following snippet, which could be either C, C++, or Java: 

if ( x > 0 || (x <= 0 && y > 100) ) 
::: 

(further instructions) 

P IFF Q 
T 
F 
F 
T 
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The symbol || denotes “OR”, and the symbol && denotes “AND”. The further 
instructions are carried out only if the proposition following the word if is true. 
On closer inspection, this big expression is built from two simpler propositions. 
Let A be the proposition that x > 0, and let B be the proposition that y > 100. 
Then we can rewrite the condition “A OR .NOT.A/ AND B/”. A truth table reveals 
that this complicated expression is logically equivalent to “A OR B”. 

A B A OR .NOT.A/ AND B/ A OR B 
T T T T 
T F T T 
F T T T 
F F F F 

This means that we can simplify the code snippet without changing the program’s 
behavior: 

if ( x > 0 || y > 100 ) 
::: 

(further instructions) 

Rewriting a logical expression involving many variables in the simplest form 
is both difficult and important. Simplifying expressions in software can increase 
the speed of your program. Chip designers face a similar challenge—instead of 
minimizing && and || symbols in a program, their job is to minimize the number 
of analogous physical devices on a chip. The payoff is potentially enormous: a chip 
with fewer devices is smaller, consumes less power, has a lower defect rate, and is 
cheaper to manufacture. 

1.3 Predicates and Quantifiers 

1.3.1 Propositions with Infinitely Many Cases 

Most of the examples of propositions that we have considered thus far have been 
straightforward in the sense that it has been relatively easy to determine if they 
are true or false. At worse, there were only a few cases to check in a truth table. 
Unfortunately, not all propositions are so easy to check. That is because some 
propositions may involve a large or infinite number of possible cases. For example, 
consider the following proposition involving prime numbers. (A prime is an integer 
greater than 1 that is divisible only by itself and 1. For example, 2, 3, 5, 7, and 11 
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are primes, but 4, 6, and 9 are not. A number greater than 1 that is not prime is said 
to be composite.) 

Proposition 1.3.1. For every nonnegative integer, n, the value of n2 C n C 41 is 
prime. 

It is not immediately clear whether this proposition is true or false. In such 
circumstances, it is tempting to try to determine its veracity by computing the value 
of1 

p.n/ WWD n 2 
C n C 41: (1.1) 

for several values of n and then checking to see if they are prime. If any of the 
computed values is not prime, then we will know that the proposition is false. If all 
the computed values are indeed prime, then we might be tempted to conclude that 
the proposition is true. 

We begin the checking by evaluating p.0/ D 41, which is prime. p.1/ D 43 is 
also prime. So is p.2/ D 47, p.3/ D 53, . . . , and p.20/ D 461, all of which are 
prime. Hmmm. . . It is starting to look like p.n/ is a prime for every nonnegative 
integer n. In fact, continued checking reveals that p.n/ is prime for all n � 39. 
The proposition certainly does seem to be true. 

But p.40/ D 402 C 40 C 41 D 41 � 41, which is not prime. So it’s not true 
that the expression is prime for all nonnegative integers, and thus the proposition is 
false! 

Although surprising, this example is not as contrived or rare as you might sus
pect. As we will soon see, there are many examples of propositions that seem to be 
true when you check a few cases (or even many), but which turn out to be false. The 
key to remember is that you can’t check a claim about an infinite set by checking a 
finite set of its elements, no matter how large the finite set. 

Propositions that involve all numbers are so common that there is a special no
tation for them. For example, Proposition 1.3.1 can also be written as 

8n 2 N: p.n/ is prime: (1.2) 

Here the symbol 8 is read “for all”. The symbol N stands for the set of nonnegative 
integers, namely, 0, 1, 2, 3, . . . (ask your instructor for the complete list). The 
symbol “2” is read as “is a member of,” or “belongs to,” or simply as “is in”. The 
period after the N is just a separator between phrases. 

Here is another example of a proposition that, at first, seems to be true but which 
turns out to be false. 

1The symbol WWD means “equal by definition.” It’s always ok to simply write “=” instead of WWD, 
but reminding the reader that an equality holds by definition can be helpful. 
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Proposition 1.3.2. a4 Cb4 C c4 D d 4 has no solution when a; b; c; d are positive 
integers. 

Euler (pronounced “oiler”) conjectured this proposition to be true in 1769. It 
was checked by humans and then by computers for many values of a, b, c, and d 
over the next two centuries. Ultimately the proposition was proven false in 1987 
by Noam Elkies. The solution he found was a D 95800; b D 217519; c D 
414560; d D 422481. No wonder it took 218 years to show the proposition is 
false! 

In logical notation, Proposition 1.3.2 could be written, 

8a 2 ZC 
8b 2 ZC 

8c 2 ZC 
8d 2 ZC: a4 

C b4 
C c 4 

¤ d 4: 

Here, ZC is a symbol for the positive integers. Strings of 8’s are usually abbrevi
ated for easier reading, as follows: 

8a; b; c; d 2 ZC: a4 
C b4 

C c 4 
¤ d 4: 

The following proposition is even nastier. 

Proposition 1.3.3. 313.x3 C y3/ D z3 has no solution when x; y; z 2 ZC. 

This proposition is also false, but the smallest counterexample values for x, y, 
and z have more than 1000 digits! Even the world’s largest computers would not be 
able to get that far with brute force. Of course, you may be wondering why anyone 
would care whether or not there is a solution to 313.x3 C y3/ D z3 where x, y, 
and z are positive integers. It turns out that finding solutions to such equations is 
important in the field of elliptic curves, which turns out to be important to the study 
of factoring large integers, which turns out (as we will see in Chapter 4) to be im
portant in cracking commonly-used cryptosystems, which is why mathematicians 
went to the effort to find the solution with thousands of digits. 

Of course, not all propositions that have infinitely many cases to check turn out 
to be false. The following proposition (known as the “Four-Color Theorem”) turns 
out to be true. 

Proposition 1.3.4. Every map can be colored with 4 colors so that adjacent2 re
gions have different colors. 

The proof of this proposition is difficult and took over a century to perfect. Along 
the way, many incorrect proofs were proposed, including one that stood for 10 years 

2Two regions are adjacent only when they share a boundary segment of positive length. They are 
not considered to be adjacent if their boundaries meet only at a few points. 
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in the late 19th century before the mistake was found. An extremely laborious 
proof was finally found in 1976 by mathematicians Appel and Haken, who used a 
complex computer program to categorize the four-colorable maps; the program left 
a few thousand maps uncategorized, and these were checked by hand by Haken and 
his assistants—including his 15-year-old daughter. There was a lot of debate about 
whether this was a legitimate proof: the proof was too big to be checked without a 
computer, and no one could guarantee that the computer calculated correctly, nor 
did anyone have the energy to recheck the four-colorings of the thousands of maps 
that were done by hand. Within the past decade, a mostly intelligible proof of the 
Four-Color Theorem was found, though a computer is still needed to check the 
colorability of several hundred special maps.3 

In some cases, we do not know whether or not a proposition is true. For exam
ple, the following simple proposition (known as Goldbach’s Conjecture) has been 
heavily studied since 1742 but we still do not know if it is true. Of course, it has 
been checked by computer for many values of n, but as we have seen, that is not 
sufficient to conclude that it is true. 

Proposition 1.3.5 (Goldbach). Every even integer n greater than 2 is the sum of 
two primes. 

While the preceding propositions are important in mathematics, computer scien
tists are often interested in propositions concerning the “correctness” of programs 
and systems, to determine whether a program or system does what it’s supposed 
to do. Programs are notoriously buggy, and there’s a growing community of re
searchers and practitioners trying to find ways to prove program correctness. These 
efforts have been successful enough in the case of CPU chips that they are now 
routinely used by leading chip manufacturers to prove chip correctness and avoid 
mistakes like the notorious Intel division bug in the 1990’s. 

Developing mathematical methods to verify programs and systems remains an 
active research area. We’ll consider some of these methods later in the text. 

1.3.2 Predicates 

A predicate is a proposition whose truth depends on the value of one or more vari
ables. Most of the propositions above were defined in terms of predicates. For 
example, 

“n is a perfect square” 

3See http://www.math.gatech.edu/˜thomas/FC/fourcolor.html 
The story of the Four-Color Proof is told in a well-reviewed popular (non-technical) book: “Four 

Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton Univ. Press, 2003, 
276pp. ISBN 0-691-11533-8. 

http://www.math.gatech.edu/~thomas/FC/fourcolor.html
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is a predicate whose truth depends on the value of n. The predicate is true for n D 4 
since four is a perfect square, but false for n D 5 since five is not a perfect square. 

Like other propositions, predicates are often named with a letter. Furthermore, a 
function-like notation is used to denote a predicate supplied with specific variable 
values. For example, we might name our earlier predicate P : 

P.n/ WWD “n is a perfect square” 

Now P.4/ is true, and P.5/ is false. 
This notation for predicates is confusingly similar to ordinary function notation. 

If P is a predicate, then P.n/ is either true or false, depending on the value of n. 
On the other hand, if p is an ordinary function, like n2 Cn, then p.n/ is a numerical 
quantity. Don’t confuse these two! 

1.3.3 Quantifiers 

There are a couple of assertions commonly made about a predicate: that it is some
times true and that it is always true. For example, the predicate 

“x 2 
� 0” 

is always true when x is a real number. On the other hand, the predicate 

“5x2 
� 7 D 0” p

is only sometimes true; specifically, when x D ˙ 7=5. 
There are several ways to express the notions of “always true” and “sometimes 

true” in English. The table below gives some general formats on the left and specific 
examples using those formats on the right. You can expect to see such phrases 
hundreds of times in mathematical writing! 

Always True 

For all n, P.n/ is true. For all x 2 R, x2 � 0. 
P.n/ is true for every n. x2 � 0 for every x 2 R. 

Sometimes True 

There exists an n such that P.n/ is true. There exists an x 2 R such that 5x2 � 7 D 0.

P.n/ is true for some n. 5x2 � 7 D 0 for some x 2 R.

P.n/ is true for at least one n. 5x2 � 7 D 0 for at least one x 2 R.


All these sentences quantify how often the predicate is true. Specifically, an 
assertion that a predicate is always true, is called a universally quantified statement. 
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An assertion that a predicate is sometimes true, is called an existentially quantified 
statement. 

Sometimes English sentences are unclear about quantification: 

“If you can solve any problem we come up with, then you get an A for the course.” 

The phrase “you can solve any problem we can come up with” could reasonably be 
interpreted as either a universal or existential statement. It might mean: 

“You can solve every problem we come up with,” 

or maybe 

“You can solve at least one problem we come up with.” 

In the preceding example, the quantified phrase appears inside a larger if-then 
statement. This is quite normal; quantified statements are themselves propositions 
and can be combined with AND, OR, IMPLIES, etc., just like any other proposition. 

1.3.4 More Notation 

There are symbols to represent universal and existential quantification, just as there 
are symbols for “AND” (^), “IMPLIES” (�!), and so forth. In particular, to say 
that a predicate, P.x/, is true for all values of x in some set, D, we write: 

8x 2 D: P.x/ (1.3) 

The universal quantifier symbol 8 is read “for all,” so this whole expression (1.3) 
is read “For all x in D, P.x/ is true.” Remember that upside-down “A” stands for 
“All.” 

To say that a predicate P.x/ is true for at least one value of x in D, we write: 

9x 2 D: P.x/ (1.4) 

The existential quantifier symbol 9, is read “there exists.” So expression (1.4) is 
read, “There exists an x in D such that P.x/ is true.” Remember that backward 
“E” stands for “Exists.” 

The symbols 8 and 9 are always followed by a variable—typically with an in
dication of the set the variable ranges over—and then a predicate, as in the two 
examples above. 

As an example, let Probs be the set of problems we come up with, Solves.x/ be 
the predicate “You can solve problem x”, and G be the proposition, “You get an A 
for the course.” Then the two different interpretations of 
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“If you can solve any problem we come up with, then you get an A for 
the course.” 

can be written as follows: 

.8x 2 Probs: Solves.x// IMPLIES G; 

or maybe 
.9x 2 Probs: Solves.x// IMPLIES G: 

1.3.5 Mixing Quantifiers 

Many mathematical statements involve several quantifiers. For example, Gold
bach’s Conjecture states: 

“Every even integer greater than 2 is the sum of two primes.” 

Let’s write this more verbosely to make the use of quantification clearer: 

For every even integer n greater than 2, there exist primes p and q such 
that n D p C q. 

Let Evens be the set of even integers greater than 2, and let Primes be the set of 
primes. Then we can write Goldbach’s Conjecture in logic notation as follows: 

8n 2 Evens: 9p 2 Primes 9q 2 Primes: n D p C q: „ ƒ‚ … „ ƒ‚ … 
for every even there exist primes

integer n > 2 p and q such that


The proposition can also be written more simply as 

8n 2 Evens: 9p; q 2 Primes: p C q D n: 

1.3.6 Order of Quantifiers 

Swapping the order of different kinds of quantifiers (existential or universal) usually 
changes the meaning of a proposition. For example, let’s return to one of our initial, 
confusing statements: 

“Every American has a dream.” 

This sentence is ambiguous because the order of quantifiers is unclear. Let A be 
the set of Americans, let D be the set of dreams, and define the predicate H.a; d/ 
to be “American a has dream d .” Now the sentence could mean that there is a 
single dream that every American shares: 

9 d 2 D: 8a 2 A: H.a; d/ 
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For example, it might be that every American shares the dream of owning their own 
home. 

Or it could mean that every American has a personal dream: 

8a 2 A: 9 d 2 D: H.a; d/ 

For example, some Americans may dream of a peaceful retirement, while others 
dream of continuing practicing their profession as long as they live, and still others 
may dream of being so rich they needn’t think at all about work. 

Swapping quantifiers in Goldbach’s Conjecture creates a patently false state
ment; namely that every even number � 2 is the sum of the same two primes: 

9p; q 2 Primes: 8n 2 Evens: n D p C q: „ ƒ‚ … „ ƒ‚ … 
there exist primes for every even 
p and q such that integer n > 2 

1.3.7 Variables Over One Domain 

When all the variables in a formula are understood to take values from the same 
nonempty set, D, it’s conventional to omit mention of D. For example, instead of 
8x 2 D 9y 2 D: Q.x; y/ we’d write 8x9y: Q.x; y/. The unnamed nonempty 
set that x and y range over is called the domain of discourse, or just plain domain, 
of the formula. 

It’s easy to arrange for all the variables to range over one domain. For exam
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the 
domain N as 

8n: .n 2 Evens/ IMPLIES .9p 9q: p 2 Primes AND q 2 Primes AND n D p C q/: 

1.3.8 Negating Quantifiers 

There is a simple relationship between the two kinds of quantifiers. The following 
two sentences mean the same thing: 

It is not the case that everyone likes to snowboard. 

There exists someone who does not like to snowboard. 

In terms of logic notation, this follows from a general property of predicate formu
las: 

NOT .8x: P.x// is equivalent to 9x: NOT.P.x//: 

Similarly, these sentences mean the same thing: 
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There does not exist anyone who likes skiing over magma. 

Everyone dislikes skiing over magma. 

We can express the equivalence in logic notation this way: 

NOT .9x: P.x// IFF 8x: NOT.P.x//: (1.5) 

The general principle is that moving a “not” across a quantifier changes the kind 
of quantifier. 

1.4 Validity 

A propositional formula is called valid when it evaluates to T no matter what truth 
values are assigned to the individual propositional variables. For example, the 
propositional version of the Distributive Law is that P AND .Q OR R/ is equiv
alent to .P AND Q/ OR .P AND R/. This is the same as saying that 

ŒP AND .Q OR R/� IFF Œ.P AND Q/ OR .P AND R/� (1.6) 

is valid. This can be verified by checking the truth table for P AND .Q OR R/ and 
.P AND Q/ OR .P AND R/: 

P Q R 
T T T 
T T F 
T F T 
T F F 
F T T 
F T F 
F F T 
F F F 

P AND .Q OR R/ 
T T 
T T 
T T 
F F 
F F 
F F 
F F 
F F 

.P AND Q/ OR .P AND R/ 

The same idea extends to predicate formulas, but to be valid, a formula now must 
evaluate to true no matter what values its variables may take over any unspecified 
domain, and no matter what interpretation a predicate variable may be given. For 
example, we already observed that the rule for negating a quantifier is captured by 
the valid assertion (1.5). 

Another useful example of a valid assertion is 

9x8y: P.x; y/ IMPLIES 8y9x: P.x; y/: (1.7) 

Here’s an explanation why this is valid: 
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Chapter 1 Propositions 

Let D be the domain for the variables and P0 be some binary predi
cate4 on D. We need to show that if 

9x 2 D 8y 2 D: P0.x; y/ (1.8) 

holds under this interpretation, then so does 

8y 2 D 9x 2 D: P0.x; y/: (1.9) 

So suppose (1.8) is true. Then by definition of 9, this means that some 
element d0 2 D has the property that 

8y 2 D: P0.d0; y/: 

By definition of 8, this means that 

P0.d0; d / 

is true for all d 2 D. So given any d 2 D, there is an element in D, 
namely, d0, such that P0.d0; d / is true. But that’s exactly what (1.9) 
means, so we’ve proved that (1.9) holds under this interpretation, as 
required. 

We hope this is helpful as an explanation, although purists would not really want 
to call it a “proof.” The problem is that with something as basic as (1.7), it’s hard to 
see what more elementary axioms are ok to use in proving it. What the explanation 
above did was translate the logical formula (1.7) into English and then appeal to 
the meaning, in English, of “for all” and “there exists” as justification. 

In contrast to (1.7), the formula 

8y9x: P.x; y/ IMPLIES 9x8y: P.x; y/: (1.10) 

is not valid. We can prove this by describing an interpretation where the hypoth
esis, 8y9x: P.x; y/, is true but the conclusion, 9x8y: P.x; y/, is not true. For 
example, let the domain be the integers and P.x; y/ mean x > y. Then the hypoth
esis would be true because, given a value, n, for y we could, for example, choose 
the value of x to be n C 1. But under this interpretation the conclusion asserts 
that there is an integer that is bigger than all integers, which is certainly false. An 
interpretation like this which falsifies an assertion is called a counter model to the 
assertion. 

4That is, a predicate that depends on two variables. 
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1.5. Satisfiability 

1.5 Satisfiability 

A proposition is satisfiable if some setting of the variables makes the proposition 
true. For example, P AND Q is satisfiable because the expression is true if P is true 
or Q is false. On the other hand, P AND P is not satisfiable because the expression 
as a whole is false for both settings of P . But determining whether or not a more 
complicated proposition is satisfiable is not so easy. How about this one? 

.P OR Q OR R/ AND .P OR Q/ AND .P OR R/ AND .R OR Q/ 

The general problem of deciding whether a proposition is satisfiable is called 
SAT. One approach to SAT is to construct a truth table and check whether or not 
a T ever appears. But this approach is not very efficient; a proposition with n 
variables has a truth table with 2n lines, so the effort required to decide about a 
proposition grows exponentially with the number of variables. For a proposition 
with just 30 variables, that’s already over a billion lines to check! 

Is there a more efficient solution to SAT? In particular, is there some, presum
ably very ingenious, procedure that determines in a number of steps that grows 
polynomially—like n2 or n14—instead of exponentially, whether any given propo
sition is satisfiable or not? No one knows. And an awful lot hangs on the answer. 
An efficient solution to SAT would immediately imply efficient solutions to many, 
many other important problems involving packing, scheduling, routing, and cir
cuit verification, among other things. This would be wonderful, but there would 
also be worldwide chaos. Decrypting coded messages would also become an easy 
task (for most codes). Online financial transactions would be insecure and secret 
communications could be read by everyone. 

Recently there has been exciting progress on sat-solvers for practical applica
tions like digital circuit verification. These programs find satisfying assignments 
with amazing efficiency even for formulas with millions of variables. Unfortu
nately, it’s hard to predict which kind of formulas are amenable to sat-solver meth
ods, and for formulas that are NOT satisfiable, sat-solvers generally take exponen
tial time to verify that. 

So no one has a good idea how to solve SAT in polynomial time, or how to 
prove that it can’t be done—researchers are completely stuck. The problem of 
determining whether or not SAT has a polynomial time solution is known as the “P 
vs. NP” problem. It is the outstanding unanswered question in theoretical computer 
science. It is also one of the seven Millenium Problems: the Clay Institute will 
award you $1,000,000 if you solve the P vs. NP problem. 

http://www.claymath.org/millennium/
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