
18.335 Midterm Solutions, Fall 2010

Problem 1: SVD Stability (20 points)
Consider the problem of computing the SVD A = UΣV ∗ from a matrix A (the input). In this case, we are
computing the function f (A) = (U,Σ,V): the outputs are of the SVD are 3 matrices, i.e. a triple (U,Σ,V)
and not just the product UΣV ∗.

(a) In floating-point, we compute f̃ (A) = (Ũ , Σ̃,Ṽ). If this were backwards stable, there would be some

δ A with �δ A� = �A�O(εmachine) such that f (A + δ A) = (Ũ , Σ̃,Ṽ), i.e. (Ũ , Σ̃,Ṽ) are the exact SVD

of A + δ A. Note that this is a much stronger statement than simply that A + δ A = Ũ Σ̃Ṽ ∗!

(b) For it to be backwards stable, (Ũ , Σ̃,Ṽ) would have to be the exact SVD of something, which would

mean that Ũ and Ṽ would have to be exactly unitary, which is extremely unlikely under roundoff

errors.

(c) If the exact SVD of A + δ A is f (A + δ A) = (U �,Σ�,V �), then stability would mean that, in addition to
�δ A� = �A�O(εmachine), we would also have to have �(U �,Σ�,V �)−(Ũ , Σ̃,Ṽ)� = �(U,Σ,V)�O(εmachine),
for any norm �(U,Σ,V)� on triples (U,Σ,V). For example, we could use �(U, Σ,V)� = max(�U�,�Σ�,�V �)
for any matrix norm. e.g. for the L2 induced norm, �U� = �V � = 1 and �Σ� = �A�, so we would have

max(�U � −Ũ�,�Σ
� − Σ̃�,�V −Ṽ�) = �A�O(εmachine),

or equivalently

�U � −Ũ� = �A�O(εmachine),

�Σ
� − Σ̃� = �A�O(εmachine),

�V � −Ṽ� = �A�O(εmachine).

It is tempting to instead put �U�O(εmachine), �Σ�O(εmachine), and �V �O(εmachine) on the right-
hand sides, but this appears to be a much stronger condition (which may well be true in SVD algo­
rithms, but is not what was given).

Problem 2: Least squares (20 points)

Suppose that we want to solve the weighted least-squares problem

min�B−1(Ax − b)�2
x

where B (m × m) is a nonsingular square matrix and A (m × n) has full column rank. This can be solved a bit
trivially because we can write it down as an ordinary least squares problem

min �A�x − b�)�2
x

for A� = B−1A and b� = B−1b.

(a) The normal equations are A�∗A�x = A�∗b� from ordinary least-squares, i.e.

A∗ �
B−1�∗

B−1Ax = A∗ �
B−1�∗

B−1x.

(b) We can solve it exactly as for the ordinary least-squares problem in A� and b�. First, compute A� =

U−1L−1A by backsubstitution, where B = LU e.g. by Gaussian elimination. Then QR factorize

A� = QR e.g. by Householder, then solve R∗x = Q∗b� = Q∗U−1L−1b. As in ordinary QR for least-

squares, all of the squareing of A� has been cancelled analytically, and both the right and left-hand

sides of this equation are multiplications of things with κ(R) = κ(B−1A) and κ(B−1), respectively.

1

�

I should mention that there are even more efficient/accurate ways to solve this problem than doing ordinary
least-squares with B−1A. LAPACK provides something called a “generalized QR” factorization A = QR,
B = QT Z for this, where Z is also unitary and T is upper triangular, to avoid the necessity of a separate LU
factorization of B.

Problem 3: Eigenvalues (20 points)
(a) Suppose our initial guess is expanded in the eigenvectors qi as x1 = c1q1 +c2q2 + (where for a ran­· · ·

dom x1 all the ci are �= 0 in general), in which case xn = (c1λ1
nq1 +c2λ2

nq2 + · · ·)/�· · ·�. If |λ1| = |λ2|,
then the q1 and q2 terms will grow at the same rate, and it will never be dominated by q1 alone—xn

will “bounce around” in a two-dimensional subspace spanned by q1 and q2. Note that the algorithm
will not in general converge: for example, if λ2 = −λ1, then the relative signs of the q1 and q2 terms
will oscillate. (More generally, λ2 = eiφ λ1 for some phase φ , and the q2 term will rotate in phase by
φ relative to q1 on each step.)

However, if λ1 = λ2, then xn = [λ1
n(c1q1 + c2q2) + O(|λ3/λ1|n)]/�· · ·�, and xn therefore becomes

parallel to c1q1 + c2q2 as n → ∞ (assuming |λ3| < |λ1|). But both q1 and q2 are eigenvectors with the
same eigenvalue λ1, so c1q1 + c2q2 is also an eigenvector of λ1. Therefore, this is not a problem: we
still get an eigenvector of λ1. Equivalently, all of the eigenvectors for λ = λ1 form a subspace which
is magnified relative to other eigenvalues by multiplying repeatedly by A, as long as other eigenvalues
= λ1 have smaller magnitude.

(b) Applying Lanczos to (A − µI)2 is computationally easy because we just need to multiply by (A − µI)
twice in each step (cheap if A is sparse, cost ∼ #nonzeros). However, we have squared the condition
number of A − µI, and thus we square the rate at which the largest-|λ | eigenvalues appear in the
Krylov space, correspondingly slowing the rate (~ doubling the number of iterations) at which we get
the smallest eigenvalue (the one closest to µ), and exacerbating problems with roundoff errors and
ghost eigenvalues.

On the other hand, (A − µI)−1 does not square any condition numbers, since the desired eigenvalue is
now the largest-magnitude one, there should be no problem with ghost eigenvalues or roundoff (from
homework) and Lanczos should converge well. However, we now have to multiply by (A − µI)−1

at each step, which means that on each step we need to solve a linear system with A − µI. If A is
amenable to sparse-direct factorization, then we can do this once and re-use it throughout the Lanczos
process (only somewhat slower than multiplying by A repeatedly, since the sparse-direct factorization
generally loses some sparsity). If sparse-direct solvers are impractical and we have to use an iterative
solver like GMRES etcetera, then we have the expense of repeating this iterative process on each step
of Lanczos.

Because of these tradeoffs, neither method is ideal for computing interior the eigenvalue closest to
µ—computing interior eigenvalues is tricky.

2

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

