
0 10 20 30 40 50 60 70 80 90 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

fr
ac

tio
na

l e
rr

or
 |∆

λ/
λ|

number of iterations (matrix−vector multiplies)

Lanczos
restarted Lanczos

Figure 1: Fractional error in minimum eigenvalue λ as a function of iterations (matrix-vector multiples) for
Lanczos and for restarted Lanczos (restarting with the best Ritz vector every 10 iterations).

18.335 Problem Set 5 Solutions

Problem 1 (10+10+10 pts):
The results for parts (a) and (b) are shown in figure 1. Both Lanczos and restarted Lanczos converge to more
than six significant digits to the minimal λ in under 50 iterations, but the restarted version has much more
erratic convergence.

My Matlab code (very inefficient, but does the job) is given below. Note that, in order to restart, we must
keep track of the Qn matrix (save the q vectors) in order to compute the Ritz vector Qny from an eigenvector
y of Tn.

% Usage: [T, lamsmallest] = lanczos(A, b, nmax)
%
% Returns nmax-by-nmax tridiagonal matrix T after nmax steps of Lanczos,
% starting with a vector b (e.g. a random vector). T is
% unitarily similar to A (in theory).
%
% If nrestart is passed, repeat the process nrestart times, each time
% starting over with the Ritz vector for the minimim eigenvalue.
%
% Also returns an array lamsmallest of the smallest Ritz values
% for each iteration.
%
% (This routine is not for serious use! Very inefficient, simplistic
% restarting, no re-orthogonalization, etc.)
function [T,lamsmallest] = lanczos(A, b, nmax, nrestart)

if (nargin < 4)

nrestart = 1;

1

end
lamsmallest = [];
m = size(A,1);
for irestart = 1:nrestart

beta(1) = 0;
qprev = zeros(m, 1);
q = b / norm(b);
Q = q;
for n = 1:nmax

v = A*q;
alpha(n) = q’ * v;
v = v - beta(n) * qprev - alpha(n) * q;
beta(n+1) = norm(v);
qprev = q;
q = v / beta(n+1);
Q = [Q,q];

beta1 = beta(2:end-1);
T = diag(alpha) + diag(beta1,1) + diag(beta1,-1);
lamsmallest = [lamsmallest, min(eig(T))];

end
[V,D] = eig(T);
lams = diag(D);
ilam = min(find(lams == min(lams)));
b = Q(:,1:nmax) * V(:,ilam);

end

In part (c), I asked you to repeat the same process, except selecting the min-|λ | eigenvalue at each step.
For this particular A, the smalles two eigenvalues are −0.3010 and +0.3828, so the minimum-|λ | eigenvalue
is the same as the minimum-λ eigenvalue, so at first glance you might expect the same results as before.
However, the algorithm doesn’t “know” this fact, and Lanczos is much better at getting extremal (min/max)
eigenvalues correct than eigenvalues in the interior of the spectrum. The results are shown in figure 2. The
nonrestarted case appears to converge the same as before at first, but periodically a spurious/ghost eigenvalue
appears near 0 that messes up convergence until it goes away. The restarted case is even worse. (The situation
would be even worse if we tried to get an eigenvalue even further in the interior of the spectrum, e.g. the
eigenvalue closest to 2.)

Problem 2 (25 pts):
The residual curves are plotted in figure 3. Several things are apparent. First, as expected, CG (conjugate
gradient) converges much faster than SD (steepest descent). Since the condition number κ(A) ≈ 397 for
this A, we expect SD to take several hundred iterations to converge, while CG should take only several
dozen. Second the computed residual for CG matches the actual residual until we hit machine precision
(≈ 10−16), at which point rounding errors prevent the actual residual from decreasing further (while the
computed residual keeps going down). Third, the estimate 2(

√
κ − 1)n(

√
κ + 1)n from theorem 38.5 is

grossly pessimistic.
What is happening, as discussed in class, is that the CG process is effectively shrinking the size of the

vector space as it goes along, because once it searches a direction it never needs to search that direction
again, and the condition number of A restricted to the remaining subspace gets better and better—we get
superlinear convergence, observed in the fact that the residual on decreases faster than exponentially (which
would be a straight line on a semilog scale).

2

0 20 40 60 80 100 120 140 160 180 200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

fr
ac

tio
na

l e
rr

or
 |∆

λ/
λ|

number of iterations (matrix−vector multiplies)

lanczos
restarted lanczos

Figure 2: Fractional error in minimum-|λ | eigenvalue λ as a function of iterations (matrix-vector multi­
ples) for Lanczos and for restarted Lanczos (restarting with the best Ritz vector every 10 iterations). The
convergence is irregular because Lanczos has trouble getting the interior of the spectrum accurately.

0 20 40 60 80 100 120 140 160 180 200
10

−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

number of iterations (matrix−vector multiplies)

L2
 n

or
m

 o
f r

es
id

ua
l

CG residual
CG actual residual
SD residual
theorem 38.5 estimate

Figure 3: Convergence of the residual for problem 38.6, using conjugate-gradient (CG) or steepest-descent
(SD), and also the actual CG residual �Ax − b� as well as the estimated upper bound on the residual from
theorem 38.5.

3

We can quantify this in various ways. For example, since on each step the residual is “supposed” to
decrease by a factor f = (

√
κ − 1)/(

√
κ + 1), we can define an “effective” condition number κ̃n from the

actual rate of decrease fn = (
√

κ̃n − 1)/(
√

κ̃n + 1) = �rn+1�/�rn�. Thus,
√

κ̃n = (1 + fn)/(1 − fn). By the
time 30 iterations have passed, κ̃30 is only 38; by 40 iterations, κ̃40 ≈ 21; by 60 iterations, κ̃60 ≈ 8.8. If we
look at the set of eigenvalues, we see that eliminating just the two smallest λ would give a condition number
of 34, and eliminating the 11 smallest eigenvalues would give a condition number of 8.4. (Eliminating the
largest eigenvalues does not reduce the condition number nearly as quickly.) So, what seems to be happening
is that CG is effectively eliminating the smallest eigenvalues from the spectrum as the algorithm progresses,
improving the condition number of A and hence the convergence rate is better than the pessimistic bound of
theorem 38.5.

The code for SD was posted on the web site; my code for CG in this problem is listed below (modified
to add an additional stopping criteria for problem 3).

% Usage: [x, residnorm, residnorm2] = CG(A, b, x, nmax, tol)

%

% Performs nmax steps of conjugate gradient to solve Ax = b for x,

% given a starting guess x (e.g. a random vector). A should be

% Hermitian positive-definite. Returns the improved solution x.

%

% Stops whenever nmax steps are performed.

%

% residnorm is an array of length nmax of the residuals |r| as

% computed during the SD iterations. residnorm2 is the same thing,

% but using |b - A*x| instead of via the updated r vector.

function [x, residnorm, residnorm2] = CG(A, b, x, nmax)

d = zeros(size(x));

Ad = d;

r = b - A*x;

rr = r’ * r;

alpha = 0;

initresid = norm(r);

for n = 1:nmax

r = r - alpha * Ad;

residnorm(n) = norm(r);

residnorm2(n) = norm(b - A*x);

rrnew = r’ * r;

d = r + d * (rrnew / rr);

rr = rrnew;

Ad = A*d;

alpha = rr / (d’ * Ad);

x = x + alpha * d;

end

Problem 3 (15 points)
The results for this problem are shown in figure 4. They are a bit odd, in that the conjugate-gradient method
indeed converges to a null-space vector, but when the residual �Ax� gets very small (≈ 10−10), the iteration
goes crazy and the residual norm shoots up again. This seems to be due to some sort of roundoff disaster. In
practice, one could simply stop the iterations once the residual became sufficiently small. There may also be
ways of mitigating the roundoff problems; for example, in blue are shown the results if CG is simply restarted
once the residual becomes small, in which case the residual continues to decrease for another couple orders
of magnitude before errors resurface, and there are probably more clever corrections as well.

4

10
0

10
1

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

number of iterations (matrix−vector multiplies)

|r
es

id
ua

l|

CG
restarted CG

Figure 4: Convergence of conjugate gradient to a null-space vector of a positive semi-definite matrix A. The
convergence breaks down once the residual �Ax� becomes very small, probably because roundoff errors
effectively give A a small negative eigenvalue. Simply stopping CG when the residual becomes small and
restarting from there (blue line) improves matters somewhat, allowing the residual to be decreased by another
couple of orders of magnitude before a breakdown resurfaces.

5

What is the source of the roundoff disaster? I haven’t tried to diagnose it in detail, but a simple check
of the eigenvalues of A reveals a clue. Although A should, in principle, be positive semidefinite, in practice
because of roundoff errors I find that it could have at least one slightly negative eigenvalue. Once roundoff
errors have made the problem indefinite, the well-known possibility of breakdown of the conjugate-gradient
algorithm resurfaces.1

1See, e.g., Paige, Parlett, and Van der Vorst, “Approximate solutions and eigenvalue bounds from Krylov subspaces,” Numer. Lin.
Alg. Appls. 2(2), 115–133 (1995), or Fischer, Hanke, and Hochbruck, “A note on conjugate-gradient type methods for indefinite and/or
inconsistent linear systems,” Num. Algorithms 11, 181–187 (1996).

6

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

