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Motivating problem 
 
In class, we encountered partial differential equations describing transient systems with chemical diffusion.  We 
learned about the method of separation of variables to solve the PDE.  However, many problems involve 
homogeneous reactions in the system or complicated coordinate systems, making the governing PDE more 
complicated and maybe requiring a more sophisticated method to solve it, such as this one: 
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This is a typical diffusion-reaction problem in spherical coordinates with first-order consumption (recognize it?).  
Solving this PDE with separation of variables can be somewhat confusing and cumbersome.  Here, we introduce the 
linear operator theory and the eigenfunction expansion method, which build the basis of all methods of solving 
linear PDEs, including separation of variables and finite fourier transforms and which needs full understanding to 
properly apply them.  You can read about Finite fourier transform methods in Deen chapters 4.1 to 4.2. after reading 
this tutorial. 
 
Summary of the Linear Operator Theory 
 
Here, we present the mathematical basis of the eigenfunction expansion method of solving PDEs.  This might not 
make sense to you at first; but with the introduction of the Sturm-Liouville operators, you will see why the following 
properties are important for solving PDEs.   
 

1. Linear Vector Spaces and Linear Operators 
 
Vector spaces are defined as a space in which a set of vectors exist and in which the following operations 
are allowed: 

• Vector addition u v  w+ =
• Scalar multiplication of vectors Au z=  

 
Linear operators, L, define and describe such linear vector spaces.  For example, a linear operator can be 
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then the vector, u in the vector space is described by 
 

2

2

d uLu
dx

=  

 
The linear operator has the following linearity property: 
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Why do we care?  We are going to think of vectors as functions or variables from now on, so u and v are 
functions in the following discussion.  We will use vector space and function space interchangeably.  We 
will therefore drop the vector notation.   

  
 

2. Inner Products 
 
Another linear operator is the inner product (also called dot product for vectors).  In a linear vector space, 
an inner product exists such that 
  

,u v α= (inner product of u with respect to v) 
 
where α is a scalar, and  
  
 , ,Au Bv z A u z B v z+ = + ,  
 
The inner product of a vector or function with itself is defined as the square of the magnitude of the 
function or vector: 
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In the continuous function (or vector) space bounded by a and b, the inner product is defined as 
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where w(x) is a weighing factor, whose importance will be discussed later.  
 
A linear vector space is called Hilbert space if all vectors have a finite magnitude, i.e. for all vectors or 
functions z, 
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3. Self –Adjoint Linear Operators 
 
Linear operators in Hilbert spaces are self-adjoint if 

 
, ,Lu v u Lv=  for all u, v in space.      (4)  

 
 

4. Eigenvalue Problem 
 
For self-adjoint linear operators, there exists a set of functions, φ , such that 

 
Lφ λφ=         (5) 



where λ is are constants.  These functions, φ , are called eigenfunctions and λ their corresponding  
eigenvalues.  These functions are linearly independent and satisfy the boundary conditions of the function 
space.   

5. Orthogonality of Eigenfunctions 
 
The eigenfunctions defined by the linear operator L are orthogonal to each other.  So for all n, m 
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The inner product with respect to itself (n = m) is the squared magnitude of the function, according to (2).  
 
 

6. Linear combination of eigenfunctions – the solution 
 
Any function in the function space can be written as a linear combination of the eigenvectors of the linear 
operator defining space.   
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where An are a set of constants (not eigenvalues!). 
 
Let’s take the inner product of this equation with respect to mφ .  Then, 
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The summation sign can be taken out of the inner product since the inner product operation is linear.  With 
equation (6) 
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Then, 
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(we switched m with n here) 
 

 
7. Solution to the linear operator 

 
The solution to the linear operator problem is then given by  
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If 
2 1nφ = , then we call nφ orthonormal eigenfunctions.  So, if nφ are orthonormal, then  
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This solution is a powerful tool as it doesn’t only provide the solution to the partial differential equation set 
by the linear operator, it also provides solutions to 

• Algebraic (matrix) equations 
• Ordinary differential equations 
• Integral equations 

 
 
Sturm-Liouville Operators 
 
Now, why was the linear operator theory so important, i.e. what does that have to do with PDEs?  Many problems in 
engineering systems can be described by a set of operators called Sturm-Liouville operators. 
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Our motivating problem given by equation (1) is described by the Sturm-Liouville operator: 
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The inner product is defined as  
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It turns out that the linear function space described by the Sturm-Liouville operator lies in the Hilbert space.  Also, 
the Sturm-Liouville operator is self-adjoint with Dirichlet, Neumann or Robin boundary conditions, i.e. 
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where A is a constant.  So, the Sturm-Liouville operator is self-adjoint only with boundary conditions (you can prove 
it yourself with equation (4)).  Another property of this operator is that all of its eigenvalues are real and negative, so 
 



  2λ α= −  
 
Since the linear operator describing our motivating problem lies in the Hilbert space, is self-adjoint, there exist 
eigenvalues and eigenfunctions, such that the solution is given by 
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if the boundary conditions are homogeneous. 
 
 
Examples:  Making the Boundary Conditions Homogeneous 
 
Example 1 
 
Recall that the boundary conditions to our motivating problem was given by 
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The second boundary condition is non-homogeneous.  At this stage, we cannot take advantage of the linear operator 
theory for a solution of this problem.  To get around this problem, we define 
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Where did the non-homogeneity in the boundary condition disappear to?  Let’s change our governing equation 
accordingly: 
 

  2 2
2

' 1 ' 'c cr c
t r r r

2α α∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂⎝ ⎠
−  

 
The non-homogeneity appears in the governing equation as – α2.  The governing equation with the Sturm-Liouville 
operator becomes 
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Example 2 
 
Let’s turn to a simpler example, similar to the problem discussed in class: 
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To avoid confusion with units, it is wise to non-dimensionalize the variables before attempting to solve the equation.  
Let 
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Then the problem is rewritten to  
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The boundary conditions are non-homogeneous.  This can be fixed by dividing the solution into a steady-state 
solution and a transient solution: 
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The steady-state solution of the problem is obtained by solving 
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with the boundary conditions given above; this gives 
 
  1ssγ η= −  
 
The transient solution of the problem is obtained by solving 
 

  
2

2
t tγ γ
τ η

∂ ∂
=

∂ ∂
        (10) 

 
With the help of the steady-state solution, we can rewrite our boundary and initial conditions of the transient part of 
the problem to 
 
    ;  ( )0, 0tγ τ = ( )1, 0tγ τ =  and ( ),0 1tγ η η= −  
   
In this case, the non-homogeneity now appears in the initial condition.  The boundary conditions are now 
homogeneous, and the problem can be solved by equation (8).   
 
 
Example: Solving PDEs Using Eigenfunction Expansion Method 
 
We’ll take the simpler problem (the problem discussed in class) for our example.  Our problem now is  
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The inner product is defined in this space as 
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Therefore, the linear operator L is self-adjoint.  There exists an eigenvalue problem, such that 
   

Lφ λφ=    with   ( )0φ 0=   and   ( )1 0φ =  
 
Since all eigenvalues are real and negative, we can write 2

n nλ α= −  with j = 1,2,3….  We are to solve 
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The solution to this eigenvalue problem (ordinary differential equation) is  
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Applying boundary conditions, we obtain 0nB =  and n nα π=  
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An can be determined by the fact that nφ should be orthonormal according to (9).  Therefore, by the definition of the 
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The solution so far according to equation (9) is 
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What is ,t nγ φ ?  Following is a crucial step, which makes this eigenfunction expansion method possible for 

solving PDEs.  Let’s plug in equation (11) into the PDE governing tγ  (10) (leaving nφ as is) 
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Since L is self-adjoint,  
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The second equality is derived from the properties of the eigenvalue problem.  The last equality is valid since nλ is a 
constant and the inner product is a linear operation.  If we now take the inner product of both sides with respect to 

mφ , summation signs are eliminated due to orthogonality properties of eigenfunctions: 
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which is a linear first-order ordinary differential equation with ,t mγ φ as the dependent variable and η  as the only 
independent variable.  Solving the equation,  
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Applying the initial condition,  
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The eigenvalues were found above as 2 2
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The final solution of γt is then 
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The final, final solution of γ is then 
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