
Chemical Subsystem 
 
Governing Equations: 

(1) Conservation Law (Rv=Rate of Formation) vi RN
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(2) Nernst-Planck Flux Equation (Fick’s diffusion + convection + migration) 
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Boundary conditions come from  
1. flux matching    SRNNn +−⋅= )( 2110  
2. concentration matching  )()( −+ ⋅= xcKxc  
3. symmetry    0=iN  

 
Solution Methods 
Scale first to get more easily solved equations, and more general solutions.  You should 
already have the solutions to most scaled equations you might encounter in your notes, 
homework solutions, and textbook examples… 
 
Linear ODE’s 

1. Direct Integration 
2. Tables 
3. Green’s Functions 

Linear PDE’s 
1. Linear Operator Theory 

Sturm-Liouville Operators  
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2. Separation of Variables 
Assume    ( y )()(), yYxXx =φ  

3. Finite Fourier Transform (Chapter 4 Deen, tables) 
 
Dimensionless Groups (Generate by scaling governing equations) 

(1) Dahmkohler (reaction/diffusion)  
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(2) Peclet 

(3) Reynolds (inertial/viscous)  
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2nd Order Chemistry 
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Rapid Equilibrium    
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Mechanical Subsystem 
 
Governing Equations 

(1) Conservation of Mass   0=⋅∇+
∂
∂ v
t
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 Incompressible Fluid  0=⋅∇ v  

(2) Conservation of Momentum  F
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(3) Navier-Stokes   othere FvEP
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Poiseulle Pipe Flow 
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Stress  
Stress and stress tensor (units F/A) Tnijij ⋅=τ  

TF ⋅∇=  

Viscous stress    
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Generalized Hooke’s Law  kkijij
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Electrical Subsystem 
 
Electroquasistatic approximation: Assumes that magnetic field (B) is negligibly small, so 

the change with time is also negligible. This is applicable when L (the characteristic 
length) is much smaller than the wavelength. 



Governing Equations: 
 
(1) Gauss’s Law   ρε =⋅∇ E  
(2) Faraday’s Law   Φ−∇=⇒=×∇ EE 0   

(3) Conservation of Charge  J
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(4) Current Constitutive Law  fluidi
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Boundary Conditions: 
 
(1) ( ) sEEn σεε =−⋅ 2211  
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Modification to Species Flux: 
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+∇−=  where u is the mobility of species I 

 
Charge relaxation: 
 

σ
ετ =   In most bio-systems, relaxation time is on the order of nanoseconds. 

 
Diffusion and migration occur through very different mechanisms, leading to very 
different relaxation profiles. 
 
Conductivity of a solution can be described by: ∑=
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Electrical Double Layer: 
 
Boltzmann distribution   RTFz
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 equilibrium distribution of ions, obtained from setting flux = 0 and using the Einstein 

Relation 
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Debye length: 22
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=   as solved in HW 3, Problem 4. 



 
The debye length has several interpretations: a.) length over which the potential of a 
charged surface decays, b.) length scale over which diffusion and charge relaxation time 
scales are on the same order, c.) length scale over which diffusion and migration 
compete. 
 
In bio-systems, this is generally on the order of nanometers. 
 

For 
κ
1

>>sticcharacteriL , electroneutrality applies: 
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This simplifies Gauss’s Law. This, combined with Faraday’s Law gives Laplace’s 
Equation:  02 =Φ∇
 
Donnan Potential: 
 
Often used as a boundary condition. This equation describes the equilibrium 
concentration gradient and potential due to a charged material immersed in an ionic 
solution. 
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Examples: 

• Non-equilibrium/non-steady transport of ions across neutral material 
• Donnan equilibrium problems of 2 classes: a.) given fixed charge of material, 

concentration in bath, find internal concentrations and potential, b.) given bath 
concentration and constitutive equation describing fixed charge of material, find 
self-consistent material charge, internal ion concentration, and potential. 

• IGF Diffusion/Reaction through tissue 
• Tendon swelling experiment 
• Electrodiffusion through the glycocalyx 
• Minority carrier phenomenon – majority carriers shield the fixed charges. 

Minority carriers travel through the material as if charges aren’t present.(See 
example 2.6.4 in AJG manuscript) 

 
Electrokinetic Phenomena – Electrical and Mechanical coupling 
 
Navier-Stokes with electrical forces: 
 

othere FvEP
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Assumptions/Boundary Conditions: 
 

(1) Frequently used, zr EE 0>> . This allows decouple of fields in two directions 
when solving equations 

(2) Potential at “wall” (really the slip boundary) is ζ (zeta potential). 
(3) Models for the Debye layer (see AJG p.357): 

a. Diffuse Double layer ( ) x
wall ex κ−Φ=Φ  

b. Guoy-Chapmann ( ) )( δκζ −−=Φ xex  

c. Helmholtz 
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ζ
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     ( )κδσρ 1−−= xfde  impulse model for charge 
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(4) No-slip boundary at δ=x  
(5) Symmetry 

 
Electrokinetic Phenomena: 
 
Solved for the pipe problem: 

( ) ( )( ) ( )
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Using Helmholtz model, and assuming κ

1>>R we get: 
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Special Cases: 

• Darcy’s Law  PkU
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• Streaming Current PLJ
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• Electroosmotic Flow VLU
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• Streaming Potential P
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Electrophoresis (see ALG section 6.4): 
 

Electrophoretic mobility = 
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• First correction term: 
convection

relaxm
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≈  considers relative importance of counter-

ion flow 

• Second correction term: 
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 where u is the mobility of counter-ion describes 

effects of surface current 

• For κ
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Problems/Examples/Applications: 

• Comparison of macroscale and microscale model 
• Continuous flow PCR on a chip 
• Capillary electrophoresis 
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