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1 Introduction 

Magnetic Circuits offer, as do electric circuits, a way of simplifying the analysis of magnetic field 
systems which can be represented as having a collection of discrete elements. In electric circuits 
the elements are sources, resistors and so forth which are represented as having discrete currents 
and voltages. These elements are connected together with ‘wires’ and their behavior is described 
by network constraints (Kirkhoff’s voltage and current laws) and by constitutive relationships such 
as Ohm’s Law. In magnetic circuits the lumped parameters are called ‘Reluctances’ (the inverse 
of ‘Reluctance’ is called ‘Permeance’). The analog to a ‘wire’ is referred to as a high permeance 
magnetic circuit element. Of course high permeability is the analog of high conductivity. 

By organizing magnetic field systems into lumped parameter elements and using network con
straints and constitutive relationships we can simplify the analysis of such systems. 

2 Electric Circuits 

First, let us review how Electric Circuits are defined. We start with two conservation laws: conser
vation of charge and Faraday’s Law. From these we can, with appropriate simplifying assumptions, 
derive the two fundamental circiut constraints embodied in Kirkhoff’s laws. 

2.1 KCL 

Conservation of charge could be written in integral form as: 

dρf
© J~ · ~nda + dv = 0 (1) 

volume dt 

This simply states that the sum of current out of some volume of space and rate of change of 
free charge in that space must be zero. 

Now, if we define a discrete current to be the integral of current density crossing through a part 
of the surface: 

ik = − J~ · ~nda (2) 
surfacek 

and if we assume that there is no accumulation of charge within the volume (in ordinary circuit 
theory the nodes are small and do not accumulate charge), we have: 

−
�

© J~ · ~nda = ik = 0 (3) 
k 
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which holds if the sum over the index k includes all current paths into the node. This is, of 
course, KCL. 

2.2 KVL 

Faraday’s Law is, in integral form: 

~ ℓ = −E · d~ d 
B · ~nda (4) 

dt 

where the closed loop in the left hand side of the equation is the edge of the surface of the 
integral on the right hand side. 

Now if we define voltage in the usual way, between points a and b for element k: 

bk 

~ ℓvk = E · d~ (5) 
ak 

Then, if we assume that the right-hand side of Faraday’s Law (that is, magnetic induction) is 
zero, the loop equation becomes: 

vk = 0 (6) 
k 

This works for circuit analysis because most circuits do not involve magnetic induction in the 
loops. However, it does form the basis for much head scratching over voltages encountered by 
‘ground loops’. 

2.3 Constitutive Relationship: Ohm’s Law 

Many of the materials used in electric circuits carry current through a linear conduction mechanism. 
That is, the relationship between electric field and electric current density is 

J = σ ~~ E (7) 

Suppose, to start, we can identify a piece of stuff which has constant area and which is carrying 
current over some finite length, as shown in Figure 1. Assume this rod is carrying current density 
J~ (We won’t say anything about how this current density managed to get into the rod, but assume 
that it is connected to something that can carry current (perhaps a wire....). Total current carried 
by the rod is simply 

I = |J |A 

and then voltage across the element is: 

ℓ 
v = E · dℓ = I 

σA 

from which we conclude the resistance is 

V ℓ 
R = = 

I σA 
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Figure 1: Simple Rod Shaped Resistor 

Of course we can still employ the lumped parameter picture even with elements that are more 
complex. Consider the annular resistor shown in Figure 2. This is an end-on view of something 
which is uniform in cross-section and has depth D in the direction you can’t see. Assume that 
the inner and outer elements are very good conductors, relative to the annular element in be
tween. Assume further that this element has conductivity σ and inner and outer radii Ri and Ro, 
respectively. 

Electrodes 
+

v

−


Resistive Material 

Figure 2: Annular Resistor 

Now, if the thing is carrying current from the inner to the outer electrode, current density would 
be: 

I 
J~ = ~irJr(r) = 

2πDr 

Electric field is 

Er = 
Jr 

σ 
= 

I 

2πDrσ 

Then voltage is 

v = 

� Ro 

Ri 

Er(r) = 
I 

2πσD 
log 

Ro 

Ri 

so that we conclude the resistance of this element is 

log Ro 

R = Ri 

2πσD 
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3 Magnetic Circuit Analogs 

In the electric circuit, elements for which voltage and current are defined are connected together 
by elements thought of as ‘wires’, or elements with zero or negligible voltage drop. The intercon
nection points are ‘nodes’. In magnetic circuits the analogous thing occurs: elements for which 
magnetomotive force and flux can be defined are connected together by high permeability magnetic 
circuit elements (usually iron) which are the analog of wires in electric circuits. 

3.1 Analogy to KCL 

Gauss’ Law is: 

© B · ~nda = 0 (8) 

which means that the total amount of flux coming out of a region of space is always zero. 
Now, we will define a quantity which is sometimes called simply ‘flux’ or a ‘flux tube’. This 

might be thought to be a collection of flux lines that can somehow be bundled together. Generally 
it is the flux that is identified with a magnetic circuit element. Mathematically it is: 

Φk = B · ~~ nda (9) 

In most cases, flux as defined above is carried in magnetic circuit elements which are made of high 
permeability material, analogous to the ‘wires’ of high conductivity material which carry current 
in electric circuits. It is possible to show that flux is largely contained in such high permeability 
materials. 

If all of the flux tubes out of some region of space (’node’) are considered in the sum, they must 
add to zero: 

Φk = 0 (10) 
k 

3.2 Analogy to KVL: MMF 

Ampere’s Law is 

H · d~~ ℓ = J~ · ~nda (11) 

Where, as for Faraday’s Law, the closed contour on the left is the periphery of the (open) surface 
on the right. Now we define what we call Magnetomotive Force, in direct analog to ‘Electromotive 
Force’, (voltage). 

bk 

~ ℓFk = H · d~ (12) 
ak 

Further, define the current enclosed by a loop to be: 

F0 = J~ · ~nda (13) 

Then the analogy to KVL is: 
Fk = F0 

k 
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Note that the analog is not exact as there is a source term on the right hand side whereas KVL 
has no source term. Note also that sign counts here. The closed integral is taken in such direction 
so that the positive sense of the surface enclosed is positive (upwards) when the surface is to the 
left of the contour. (This is another way of stating the celebrated ‘right hand rule’: if you wrap 
your right hand around the contour with your fingers pointing in the direction of the closed contour 
integration, your thumb is pointing in the positive direction for the surface). 

3.3 Analog to Ohm’s Law: Reluctance 

Consider a ‘gap’ between two high permeability pieces as shown in Figure 3. If we assume that 
their permeability is high enough, we can assume that there is no magnetic field H in them and 
so the MMF or ‘magnetic potential’ is essentially constant, just like in a wire. For the moment, 
assume that the gap dimension g is ‘small’ and uniform over the gap area A. Now, assume that 
some flux Φ is flowing from one of these to the other. That flux is 

Φ = BA 

where B is the flux density crossing the gap and A is the gap area. Note that we are ignoring 
‘fringing’ fields in this simplified analysis. This neglect often requires correction in practice. Since 
the permeability of free space is µ0, (assuming the gap is indeed filled with ’free space’), magnetic 
field intensity is 

B 
H = 

µ0 

and gap MMF is just magnetic field intensity times gap dimension. This, of course, assumes that 
the gap is uniform and that so is the magnetic field intensity: 

B 
F = g 

µ0 

Which means that the reluctance of the gap is the ratio of MMF to flux: 

F g
R = = 

Φ µ0A 

Φ 

y 
Area A 

x 
µ 

g 

Figure 3: Air Gap 
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3.4 Simple Case 

Consider the magnetic circuit situation shown in Figure 4. Here there is a piece of highly permeable 
material shaped to carry flux across a single air-gap. A coil is wound through the window in the 
magnetic material (this shape is usually referred to as a ‘core’). The equivalent circuit is shown in 
Figure 5. 

Region 1 

Region 2 
I 

Figure 4: Single air-capped Core 

Note that in Figure 4, if we take as the positive sense of the closed loop a direction which goes 
vertically upwards through the leg of the core through the coil and then downwards through the 
gap, the current crosses the surface surrounded by the contour in the positive sense direction. 

+

F = N I
 Φ 

− 

Figure 5: Equivalent Circuit 

3.5 Flux Confinement 

The gap in this case has the same reluctance as computed earlier, so that the flux in the gap is 
simply Φ = NI . Now, by focusing on the two regions indicated we might make a few observations 

R 

about magnetic circuits. First, consider ‘region 1’ as shown in Figure 6. 

µ 

Figure 6: Flux Confinement Boundary: This is ’Region 1’ 
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In this picture, note that magnetic field ~H parallel to the surface must be the same inside the 
material as it is outside. Consider Ampere’s Law carried out about a very thin loop consisting of 
the two arrows drawn at the top boundary of the material in Figure 6 with very short vertical paths 
joining them. If there is no current singularity inside that loop, the integral around it must be zero 
which means the magnetic field just inside must be the same as the magnetic field outside. Since 

B = µH, and ’highly permeable’ means µ is very large, the material is very highly permeable and ~ ~

unless B is really large, ~H must be quite small. Thus the magnetic circuit has small magnetic field 
H and therfore flux densities parallel to and just outside its boundaries aer also small. 

B is perpendicular 

µ 

Figure 7: Gap Boundary 

At the surface of the magnetic material, since the magnetic field parallel to the surface must be 
very small, any flux lines that emerge from the core element must be perpendicular to the surface 
as shown for the gap region in Figure 7. This is true for region 1 as well as for region 2, but note 
that the total MMF available to drive fields across the gap is the same as would produce field 
lines from the area of region 1. Since any lines emerging from the magnetic material in region 1 
would have very long magnetic paths, they must be very weak. Thus the magnetic circuit material 
largely confines flux, with only the relatively high permeance (low reluctance) gaps carrying any 
substantive amount of flux. 

3.6 Example: C-Core 

Consider a ‘gapped’ c-core as shown in Figure 8. This is two pieces of highly permeable material 
shaped generally like ‘C’s. They have uniform depth in the direction you cannot see. We will call 
that dimension D. Of course the area A = wD, where w is the width at the gap. We assume the 
two gaps have the same area. Each of the gaps will have a reluctance 

g
R = 

µ0A 

Suppose we wind a coil with N turns on this core as shown in Figure 9. Then we put a current 
I in that coil. The magnetic circuit equivalent is shown in Figure 10. The two gaps are in series 
and, of course, in series with the MMF source. Since the two fluxes are the same and the MMF’s 
add: 

F0 = NI = F1 + F2 = 2RΦ 

and then 

NI µ0ANI 
Φ = = 

2R 2g 
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Figure 8: Gapped Core


Φ 

N 
Turns 

I 

Figure 9: Wound, Gapped Core 

and corresponding flux density in the gaps would be: 

µ0NI 
By = 

2g 

3.7 Example: Core with Different Gaps 

As a second example, consider the perhaps oddly shaped core shown in Figure 11. Suppose the 
gap on the right has twice the area as the gap on the left. We would have two gap reluctances: 

g g
R1 = R2 = 

µ0A 2µ0A 

Since the two gaps are in series the flux is the same and the total reluctance is 

3 g
R = 

2 µ0A 

Flux in the magnetic circuit loop is 

F 2 µ0ANI 
Φ = = 

R 3 g 

and the flux density across, say, the left hand gap would be: 

Φ 2 µ0NI 
By = = 

A 3 g 
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Figure 10: Equivalent Magnetic Circuit
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Figure 11: Wound, Gapped Core: Different Gaps
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