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1 Introduction 
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Figure 1: Form of Electric Machine 

This section of notes discusses some of the fundamental processes involved in electric machinery. 
In the section on energy conversion processes we examine the two major ways of estimating elec
tromagnetic forces: those involving thermodynamic arguments (conservation of energy) and field 
methods (Maxwell’s Stress Tensor). But first it is appropriate to introduce the topic by describing 
a notional rotating electric machine. 

Electric machinery comes in many different types and a strikingly broad range of sizes, from 
those little machines that cause cell ’phones and pagers to vibrate (yes, those are rotating electric 
machines) to turbine generators with ratings upwards of a Gigawatt. Most of the machines with 
which we are familiar are rotating, but linear electric motors are widely used, from shuttle drives in 
weaving machines to equipment handling and amusement park rides. Currently under development 
are large linear induction machines to be used to launch aircraft. It is our purpose in this subject 
to develop an analytical basis for understanding how all of these different machines work. We start, 
however, with a picture of perhaps the most common of electric machines. 

Electric Machine Description: 

Figure 1 is a cartoon drawing of a conventional induction motor. This is a very common type 
of electric machine and will serve as a reference point. Most other electric machines operate in 
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a fashion which is the same as the induction machine or which differ in ways which are easy to 
reference to the induction machine. 

Most (but not all!) machines we will be studying have essentially this morphology. The rotor 
of the machine is mounted on a shaft which is supported on some sort of bearing(s). Usually, but 
not always, the rotor is inside. I have drawn a rotor which is round, but this does not need to be 
the case. I have also indicated rotor conductors, but sometimes the rotor has permanent magnets 
either fastened to it or inside, and sometimes (as in Variable Reluctance Machines) it is just an 
oddly shaped piece of steel. The stator is, in this drawing, on the outside and has windings. With 
most of the machines we will be dealing with, the stator winding is the armature, or electrical 
power input element. (In DC and Universal motors this is reversed, with the armature contained 
on the rotor: we will deal with these later). 

In most electrical machines the rotor and the stator are made of highly magnetically permeable 
materials: steel or magnetic iron. In many common machines such as induction motors the rotor 
and stator are both made up of thin sheets of silicon steel. Punched into those sheets are slots 
which contain the rotor and stator conductors. 

Figure 2 is a picture of part of an induction machine distorted so that the air-gap is straightened 
out (as if the machine had infinite radius). This is actually a convenient way of drawing the machine 
and, we will find, leads to useful methods of analysis. 
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Figure 2: Windings in Slots 

What is important to note for now is that the machine has an air gap g which is relatively 
small (that is, the gap dimension is much less than the machine radius r). The air-gap also has a 
physical length l. The electric machine works by producing a shear stress in the air-gap (with of 
course side effects such as production of “back voltage”). It is possible to define the average air-
gap shear stress, which we will refer to as τ . Total developed torque is force over the surface area 
times moment (which is rotor radius): 

T = 2πr 2ℓ < τ > 

Power transferred by this device is just torque times speed, which is the same as force times 
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surface velocity, since surface velocity is u = rΩ:


Pm = ΩT = 2πrℓ < τ > u 

If we note that active rotor volume is , the ratio of torque to volume is just: 

T 
= 2 < τ > 

Vr 

Now, determining what can be done in a volume of machine involves two things. First, it is 
clear that the volume we have calculated here is not the whole machine volume, since it does not 
include the stator. The actual estimate of total machine volume from the rotor volume is actually 
quite complex and detailed and we will leave that one for later. Second, we need to estimate the 
value of the useful average shear stress. Suppose both the radial flux density Br and the stator 
surface current density Kz are sinusoidal flux waves of the form: 

Br = 
√

2B0 cos (pθ − ωt) 

Kz = 
√

2K0 cos (pθ − ωt) 

Note that this assumes these two quantities are exactly in phase, or oriented to ideally produce 
torque, so we are going to get an “optimistic” bound here. Then the average value of surface 
traction is: 

1 
� 2π 

< τ >= BrKzdθ = B0K0
2π 0 

The magnetic flux density that can be developed is limited by the characteristics of the magnetic 
materials (iron) used. Current densities are a function of technology and are typically limited by 
how much effort can be put into cooling and the temperature limits of insulating materials. In 
practice, the range of shear stress encountered in electric machinery technology is not terribly 
broad: ranging from a few kPa in smaller machines to about 100 kPa in very large, well cooled 
machines. 

It is usually said that electric machines are torque producing devices, meaning tht they are 
defined by this shear stress mechanism and by physical dimensions. Since power is torque times 
rotational speed, high power density machines necessarily will have high shaft speeds. Of course 
there are limits on rotational speed as well, arising from centrifugal forces which limit tip velocity. 

Our first step in understanding how electric machinery works is to understand the mechanisms 
which produce forces of electromagnetic origin. 

Energy Conversion Process: 

In a motor the energy conversion process can be thought of in simple terms. In “steady state”, 
electric power input to the machine is just the sum of electric power inputs to the different phase 
terminals: 

Pe = viii 
i 

Mechanical power is torque times speed: 

Pm = TΩ 
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Figure 3: Energy Conversion Process 

And the sum of the losses is the difference: 

Pd = Pe − Pm 

It will sometimes be convenient to employ the fact that, in most machines, dissipation is small 
enough to approximate mechanical power with electrical power. In fact, there are many situations in 
which the loss mechanism is known well enough that it can be idealized away. The “thermodynamic” 
arguments for force density take advantage of this and employ a “conservative” or lossless energy 
conversion system. 

3.1 Energy Approach to Electromagnetic Forces: 
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Figure 4: Conservative Magnetic Field System 

To start, consider some electromechanical system which has two sets of “terminals”, electrical 
and mechanical, as shown in Figure 4. If the system stores energy in magnetic fields, the energy 
stored depends on the state of the system, defined by (in this case) two of the identifiable variables: 
flux (λ), current (i) and mechanical position (x). In fact, with only a little reflection, you should 
be able to convince yourself that this state is a single-valued function of two variables and that the 
energy stored is independent of how the system was brought to this state. 

Now, all electromechanical converters have loss mechanisms and so are not themselves conser
vative. However, the magnetic field system that produces force is, in principle, conservative in the 
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sense that its state and stored energy can be described by only two variables. The “history” of the 
system is not important. 

It is possible to chose the variables in such a way that electrical power into this conservative 
system is: 

dλ 
P e = vi = i 

dt 

Similarly, mechanical power out of the system is: 

dx 
Pm = f e 

dt 

The difference between these two is the rate of change of energy stored in the system: 

dWm 
= P e − Pm 

dt 

It is then possible to compute the change in energy required to take the system from one state to 
another by: 

a 

Wm(a) − Wm(b) = idλ − f edx 
b 

where the two states of the system are described by a = (λa, xa) and b = (λb, xb) 
If the energy stored in the system is described by two state variables, λ and x, the total 

differential of stored energy is: 
∂Wm ∂Wm

dWm = dλ + dx 
∂λ ∂x 

and it is also: 
dWm = idλ − f edx 

So that we can make a direct equivalence between the derivatives and: 

∂Wm
f e = − 

∂x 

In the case of rotary, as opposed to linear, motion, torque T e takes the place of force f e and 
angular displacement θ takes the place of linear displacement x. Note that the product of torque 
and angle has the same units as the product of force and distance (both have units of work, which 
in the International System of units is Newton-meters or Joules. 

In many cases we might consider a system which is electricaly linear, in which case inductance 
is a function only of the mechanical position x. 

λ(x) = L(x)i 

In this case, assuming that the energy integral is carried out from λ = 0 (so that the part of the 
integral carried out over x is zero), 

� λ 1 1 λ2 

Wm = λdλ = 
0 L(x) 2 L(x) 

This makes 

f e 1 
λ2 ∂ 1 

= −
2 ∂x L(x) 
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Note that this is numerically equivalent to 

f e = 
1 
i2 ∂ L(x)−

2 ∂x 

This is true only in the case of a linear system. Note that substituting L(x)i = λ too early in the 
derivation produces erroneous results: in the case of a linear system it produces a sign error, but 
in the case of a nonlinear system it is just wrong. 

3.1.1 Example: simple solenoid 

Consider the magnetic actuator shown in cartoon form in Figure 5. The actuator consists of 
a circular rod of ferromagnetic material (very highly permeable) that can move axially (the x-
direction) inside of a stationary piece, also made of highly permeable material. A coil of N turns 
carries a current I. The rod has a radius R and spacing from the flat end of the stator is the 
variable dimension x. At the other end there is a radial clearance between the rod and the stator 
g. Assume g ≪ R. If the axial length of the radial gaps is ℓ = R/2, the area of the radial gaps is 
the same as the area of the gap between the rod and the stator at the variable gap. 

R/2 

µ 
CLx R 

g 

N turns 

µ 

Figure 5: Solenoid Actuator


The permeances of the variable width gap is:


µ0πR2 

=P1 
x 

and the permeance of the radial clearance gap is, if the gap dimension is small compared with the 
radius: 

2µ0πRℓ µ0πR2 

P2 = 
g 

= 
g 

The inductance of the coil system is: 

L = 
N2 

= N2 P1P2 
= 

µ0πR2N2 

x + gR1 + R2 P2 + P2 

Magnetic energy is: 
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� λ0 λ2 x + g
Wm = idλ =

1 λ2 

= 0 

0 2 L(x) 2 µ0πR2N2 

And then, of course, force of electric origin is: 

∂Wm λ2 d 1 
f e 0 = =− 

∂x 
−

2 dx L(x) 

Here that is easy to carry out: 

d 1 1 
= 

dx L µ0πR2N2 

So that the force is: 

λ2 1 
f e(x) = 0 −

2 µ0πR2N2 

Given that the system is to be excited by a current, we may at this point substitute for flux: 

µ0πR2Ni 
λ = L(x)i = 

x + g 

and then total force may be seen to be: 

µ0πR2N2 i2 

f e = − 
(x + g)2 2 

The force is ‘negative’ in the sense that it tends to reduce x, or to close the gap. 

3.1.2 Multiply Excited Systems 

There may be (and in most electric machine applications there will be) more than one source of 
electrical excitation (more than one coil). In such systems we may write the conservation of energy 
expression as: 

dWm = ikdλk − f edx 
k 

which simply suggests that electrical input to the magnetic field energy storage is the sum (in this 
case over the index k) of inputs from each of the coils. To find the total energy stored in the 
system it is necessary to integrate over all of the coils (which may and in general will have mutual 
inductance). 

Wm = i dλ · 

Of course, if the system is conservative, Wm(λ1, λ2, . . . , x) is uniquely specified and so the actual 
path taken in carrying out this integral will not affect the value of the resulting energy. 
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3.1.3 Coenergy 

We often will describe systems in terms of inductance rather than its reciprocal, so that current, 
rather than flux, appears to be the relevant variable. It is convenient to derive a new energy 
variable, which we will call co-energy, by: 

′ W = λiii − Wmm 

i 

and in this case it is quite easy to show that the energy differential is (for a single mechanical 
variable) simply: 

′ dW = λkdik + f edx m 

k 

so that force produced is: 
′∂W

fe = m 

∂x 

3.2 Example: Synchronous Machine 
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Figure 6: Cartoon of Synchronous Machine 

Consider a simple electric machine as pictured in Figure 6 in which there is a single winding 
on a rotor (call it the field winding and a polyphase armature with three identical coils spaced at 
uniform locations about the periphery. We can describe the flux linkages as: 

λa = Laia + Labib + Labic + M cos(pθ)if 

2π 
λb = Labia + Laib + Labic + M cos(pθ − 

3 
)if 

2π 
λc = Labia + Labib + Laic + M cos(pθ + 

3 
)if 

2π 2π 
λf = M cos(pθ)ia + M cos(pθ − 

3 
)ib + M cos(pθ + 

3 
) + Lf if 

It is assumed that the flux linkages are sinusoidal functions of rotor position. As it turns out, 
many electrical machines work best (by many criteria such as smoothness of torque production) 

8




� � 

� � 

� � 

� � 

� � 

� � 

if this is the case, so that techniques have been developed to make those flux linkages very nearly 
sinusoidal. We will see some of these techniques in later chapters of these notes. For the moment, 
we will simply assume these dependencies. In addition, we assume that the rotor is magnetically 
’round’, which means the stator self inductances and the stator phase to phase mutual inductances 
are not functions of rotor position. Note that if the phase windings are identical (except for their 
angular position), they will have identical self inductances. If there are three uniformly spaced 
windings the phase-phase mutual inductances will all be the same. 

Now, this system can be simply described in terms of coenergy. With multiple excitation it 
is important to exercise some care in taking the coenergy integral (to ensure that it is taken over 
a valid path in the multi-dimensional space). In our case there are actually five dimensions, but 
only four are important since we can position the rotor with all currents at zero so there is no 
contribution to coenergy from setting rotor position. Suppose the rotor is at some angle θ and that 
the four currents have values ia0, ib0, ic0 and if0. One of many correct path integrals to take would 
be: 

� ia0 
′ Wm = Laiadia 

0 
� ib0 

+ (Labia0 + Laib) dib 
0 
� ic0 

+ (Labia0 + Labib0 + Laic) dic 
0 
� if 0 2π 2π 

+ M cos(pθ)ia0 + M cos(pθ − )ib0 + M cos(pθ + )ic0 + Lf if dif 
0 3 3 

The result is: 

1
′ Wm = La i2 

co + Lab (iaoib0 + iaoic0 + icoib0)a0 + i2 
b0 + i2 

2 
2π 2π 1 

+Mif0 ia0 cos(pθ) + ib0 cos(pθ − ) + ic0 cos(pθ + ) + Lf i2 

3 3 2 f0 

Since there are no variations of the stator inductances with rotor position θ, torque is easily 
given by: 

′∂W 2π 2π 
Te = m = −pMif0 ia0 sin(pθ) + ib0 sin(pθ − ) + ico sin(pθ + )

∂θ 3 3 

3.2.1 Current Driven Synchronous Machine 

Now assume that we can drive this thing with currents: 

ia0 = Ia cos ωt 
2π 

ib0 = Ia cos ω t − 
3 
2π 

ic0 = Ia cos ω t + 
3 

if0 = If 
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and assume the rotor is turning at synchronous speed: 

pθ = ωt + δi 

=Noting that cos x sin y
 1
2 sin(x − y) +
 12 sin(x + y), we find the torque expression above to be: 

1 1 
Te = −pMIaIf sin δi + sin (2ωt + δi)

2 2 
1 1 4π 

+ sin δi + sin 2ωt + δi −
2 2 3 
1 1 4π 

+ sin δi + sin 2ωt + δi + 
2 2 3 

The sine functions on the left add and the ones on the right cancel, leaving: 

3 
Te = pMIaIf sin δi−

2

And this is indeed one way of looking at a synchronous machine, which produces steady torque 
if the rotor speed and currents all agree on frequency. Torque is related to the current torque angle 

δi. As it turns out such machines are not generally run against current sources, but we will take 
up actual operation of such machines later. 

4 Field Descriptions: Continuous Media 

While a basic understanding of electromechanical devices is possible using the lumped parameter 
approach and the principle of virtual work as described in the previous section, many phenomena in 
electric machines require a more detailed understanding which is afforded by a continuum approach. 
In this section we consider a fields-based approach to energy flow using Poynting’s Theorem and 
then a fields based description of forces using the Maxwell Stress Tensor. These techniques will 
both be useful in further analysis of what happens in electric machines. 

4.1 Field Description of Energy Flow: Poyting’s Theorem 

Start with Faraday’s Law: 

∂ �B 
E =∇× � −

∂t 

and Ampere’s Law: 
H = J�∇× �

Multiplying the first of these by � E and taking the difference: H and the second by �

� � ∂ �
� � H� E − � H = ∇ · E × H = − � B 

E J�H · ∇ × � E · ∇ × � · 
dt 

− � · 

On the left of this expression is the divergence of electromagnetic energy flow: 

S = E × H 

10 



� �� 

�

� � 

�

� � � � � � 

� � 
� �

� �

Here, �S is the celebrated Poynting flow which describes power in an electromagnetic field 
sysstem. (The units of this quantity is watts per square meter in the International System). On 

the right hand side are two terms: � ∂
dt

~
is rate of change of magnetic stored energy. The second H B · 

term, �E J� looks a lot like power dissipation. We will discuss each of these in more detail. For the · 
moment, however, note that the divergence theorem of vector calculus yields: 

Sdv = © S �� nda 
volume 

∇ · � ·

that is, the volume integral of the divergence of the Poynting energy flow is the same as the Poynting 
energy flow over the surface of the volume in question. This integral becomes: 

�� � 
∂ �B © S �nda = � H dv · − 

volume 
E · J� + � · 

∂t 

which is simply a realization that the total energy flow into a region of space is the same as the 
volume integral over that region of the rate of change of energy stored plus the term that looks like 
dissipation. Before we close this, note that, if there is motion of any material within the system, we 
can use the empirical expression for transformation of electric field between observers moving with 
respect to each other. Here the ’primed’ frame is moving with respeect to the ’unprimed’ frame 
with the velocity �v 

� ′ E = E + �v �× B 

This transformation describes, for example, the motion of a charged particle such as an electron 
under the influence of both electric and magnetic fields. Now, if we assume that there is material 
motion in the system we are observing and if we assign �v to be the velocity of that material, so that 
� ′E is measured in a frame in which thre is no material motion (that is the frame of the material 
itself), the product of electric field and current density becomes: 

� � ′ � � ′ J� − � � ′ �E J� = E − �v × B · J� = E �v × B · J� = E J� + �v· · · · J�× B 

In the last step we used the fact that in a scalar triple product the order of the scalar (dot) 
and vector (cross) products can be interchanged and that reversing the order of terms in a vector 
(cross) product simply changes the sign of that product. Now we have a ready interpretation for 
what we have calculated: 

If the ’primed’ coordinate system is actually the frame of material motion, 

1� ′ E J� = · 
σ
|J�| 2 

which is easily seen to be dissipation and is positive definite if material conductivity σ is positive. 
The last term is obviously conversion of energy from electromagnetic to mechanical form: 

�v J�× B = �v F· · 

where we have now identified force density to be: 

F = J� × B 
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This is the Lorentz Force Law, which describes the interaction of current with magnetic field 
to produce force. It is not, however, the complete story of force production in electromechanical 
systems. As we learned earlier, changes in geometry which affect magnetic stored energy can also 
produce force. Fortunately, a complete description of electromechanical force is possible using only 
magnetic fields and that is the topic of our next section. 

4.2 Field Description of Forces: Maxwell Stress Tensor 

Forces of electromagnetic origin, because they are transferred by electric and magnetic fields, are 
the result of those fields and may be calculated once the fields are known. In fact, if a surface can 
be established that fully encases a material body, the force on that body can be shown to be the 
integral of force density, or traction over that surface. 

The traction τ derived by taking the cross product of surface current density and flux density 
on the air-gap surface of a machine (above) actually makes sense in view of the empirically derived 
Lorentz Force Law: Given a (vector) current density and a (vector) flux density. This is actually 
enough to describe the forces we see in many machines, but since electric machines have permeable 
magnetic material and since magnetic fields produce forces on permeable material even in the 
absence of macroscopic currents it is necessary to observe how force appears on such material. A 
suitable empirical expression for force density is: 

1� � H �F = J� × B −
2 

� · H ∇µ 

where �H is the magnetic field intensity and µ is the permeability.

Now, note that current density is the curl of magnetic field intensity, so that:


� � 1 � � 
F = H × µH − H H ∇µ∇× �

2 
· 

� � 1 � � 
= µ H � H H ∇µ∇× � × H −

2 
· 

And, since: 
� � � � 1 � � 

H × H = � H −
2
∇ H H∇× � H · ∇ � · 

force density is: 

� � 1 � � �� 1 
F = µ � H − µ∇ � �� H H H H ∇µH · ∇ �

2
· −

2 
� · �

� � 1 � � 
= µ � � µ H HH · ∇ H −∇ 

2
� · 

This expression can be written by components: the component of force in the i’th dimension is: 

� ∂ 1 � 
Fi = µ Hk 

∂xk 
Hi −

∂xi 
µ H2∂ 

2 k 

k k 

The first term can be written as: 

� ∂ � ∂ 
µ Hk Hi = 

∂xk 
µHkHi − Hi µHk 

� ∂ 

∂xk ∂xkk k k 
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The last term in this expression is easily shown to be divergence of magnetic flux density, which is 
zero: 

� ∂ 
B = µHk = 0∇ · �

∂xkk 

Using this, we can write force density in a more compact form as: 

H2Fk = 
∂ 

µHiHk − µδik n∂xi 2 
n 

where we have used the Kroneker delta δik = 1 if i = k, 0 otherwise. 
Note that this force density is in the form of the divergence of a tensor: 

∂ 
Fk = Tik 

∂xi 

or 
F = ∇ · T 

In this case, force on some object that can be surrounded by a closed surface can be found by 
using the divergence theorem: 

f� = Fdv = = © T �nda 
vol vol 

∇ · Tdv ·

or, if we note surface traction to be τi = k Tiknk , where n is the surface normal vector, then the 
total force in direction i is just: 

f� = τida = Tiknkda 
s k 

The interpretation of all of this is less difficult than the notation suggests. This field description 
of forces gives us a simple picture of surface traction, the force per unit area on a surface. If we 
just integrate this traction over the area of some body we get the whole force on the body. 

Note one more thing about this notation. Sometimes when subscripts are repeated as they are 
here the summation symbol is omitted. Thus we would write τi = k Tiknk = Tiknk. 

4.3 Example: Linear Induction Machine 

Figure 7 shows a highly simplified picture of a single sided linear induction motor. This is not how 
most linear induction machines are actually built, but it is possible to show through symmetry 
arguments that the analysis we can carry out here is actually valid for other machines of this class. 

This machine consists of a stator (the upper surface) which is represented as a surface current on 
the surface of a highly permeable region. The moving element consists of a thin layer of conducting 
material on the surface of a highly permeable region. The moving element (or ’shuttle’) has a 
velocity u with respect to the stator and that motion is in the x direction. The stator surface 
current density is assumed to be: 

Kz = Re K ej(ωt−kx) 
z
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Figure 7: Simple Model of single sided linear induction machine

Note that we are ignoring some important effects, such as those arising from finite length of the
stator and of the shuttle. Such effects can be quite important, but we will leave those until later,
as they are what make linear motors interesting.

Viewed from the shuttle for which the dimension in the direction of motion is x′ − x − ut′, the
relative frequency is:

ωt − kx = (ω − ku) t − kx′ = ωst − kx′

Now, since the shuttle surface can support a surface current and is excited by magnetic fields
which are in turn excited by the stator currents, it is reasonable to assume that the form of rotor
current is the same as that of the stator:

Ks = Re
{

Kse
j(ωst−kx′)

}

Ampere’s Law is, in this situation:

g
∂Hy

∂x
= Kz + Ks

which is, in complex amplitudes:

Hy =
Kz + Ks

−jkg

The y- component of Faraday’s Law is, assuming the problem is uniform in the z- direction:

−jωsBy = jkE ′

z

or
E′

z = −ωs

k
µ0Hy

A bit of algebraic manipulation yields expressions for the complex amplitudes of rotor surface
current and gap magnetic field:

Ks =
−j µ0ωsσs

k2g

1 + j mu0ωsσs

k2g

Kz

Hy =
j

kg

Kz

1 + j mu0ωsσs

k2g
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To find surface traction, the Maxwell Stress Tensor can be evaluated at a surface just below the 
stator (on this surface the x- directed magnetic field is simply H = K . Thus the traction is x z

τx = Txy = µ0HxHy 

and the average of this is: 
µ0

< τx >= Re HxH
2 y∗ 

This is: 
µ0 1 z k2g

< τx >= 
|K
� 
|2 µ0ωsσs 

2 kg 1 + µ0ωsσs 

�2 

k2g 

Now, if we consider electromagnetic power flow (Poynting’s Theorem): in the y- direction: 

Sy = EzHx 

′ And since in the frame of the shuttle Ez = −ω
k 
s µ0Hy 

µ0ωsσs 

′ 
1 ωs µ0

< S >= 
� 

k2g
z = − ω

k 
s 

< τx >y −
2 k kg 1 + µ0ωsσs 

�2 |K | 2 

k2g 

Similarly, evaluated in the frame of the stator: 

ω 
< Sy >= < τ − x > −

k 

This shows what we already suspected: the electromagnetic power flow from the stator is the 
force density on the shuttle times the wave velocity. The electromagnetic ower flow into the shuttle 
is the same force density times the ’slip’ velocity. The difference between these two is the power 
converted to mechanical form and it is the force density times the shuttle velocity. 

4.4 Rotating Machines 

The use of this formulation in rotating machines is a bit tricky because, at lest formally, directional 
vectors must have constant identity if an integral of forces is to become a total force. In cylindrical 
coordinates, of course, the directional vectors are not of constant identity. However, with care and 
understanding of the direction of traction and how it is integrated we can make use of the MST 
approach in rotating electric machines. 

Now, if we go back to the case of a circular cylinder and are interested in torque, it is pretty 
clear that we can compute the circumferential force by noting that the normal vector to the cylinder 
is just the radial unit vector, and then the circumferential traction must simply be: 

τθ = µ0HrHθ 

Assuming that there are no fluxes inside the surface of the rotor, simply integrating this over 
the surface gives azimuthal force. In principal this is the same as surrounding the surface of the 
rotor by a continuum of infinitely small boxes, one surface just outside the rotor and with a normal 
facing outward, the other surface just inside with normal facing inward. (Of course the MST is 
zero on this inner surface). Then multiplying by radius (moment arm) gives torque. The last step 
is to note that, if the rotor is made of highly permeable material, the azimuthal magnetic field just 
outside the rotor is equal to surface current density. 
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5 Generalization to Continuous Media 

Now, consider a system with not just a multiplicity of circuits but a continuum of current-carrying 
paths. In that case we could identify the co-energy as: 

′ W = λ(�a)dJ� d�am 
area 

·

where that area is chosen to cut all of the current carrying conductors. This area can be picked to 
be perpedicular to each of the current filaments since the divergence of current is zero. The flux λ 
is calculated over a path that coincides with each current filament (such paths exist since current 
has zero divergence). Then the flux is: 

� nλ(�a) = B d�·

Now, if we use the vector potential �A for which the magnetic flux density is: 

B = A∇× �

the flux linked by any one of the current filaments is: 

� ℓλ(�a) = A d�·

where d�ℓ is the path around the current filament. This implies directly that the coenergy is: 

W = A d�′ � ℓdJ� d�am 
area J 

· ·

Now: it is possible to make d�ℓ coincide with d�a and be parallel to the current filaments, so that: 

W = A d�′ � Jdv m 
vol 

·

5.1 Permanent Magnets 

Permanent magnets are becoming an even more important element in electric machine systems. 
Often systems with permanent magnets are approached in a relatively ad-hoc way, made equivalent 
to a current that produces the same MMF as the magnet itself. 

The constitutive relationship for a permanent magnet relates the magnetic flux density �B to 
magnetic field � M .H and the property of the magnet itself, the magnetization �

B = µ0 H + �� � M 

Now, the effect of the magnetization is to act as if there were a current (called an amperian current) 
with density: 

J�∗ = ∇× M 

Note that this amperian current “acts” just like ordinary current in making magnetic flux density. 
Magnetic co-energy is: 

′ W = � Mdv m 
vol 

A · ∇ × d �
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�� � 

� � � C D Now, Next, note the vector identity ∇ · C × D = D C − �· ∇ × � · ∇ × �

W = 
vol 

−∇ · A × d � Mdv ′ � M dv + A d �
m 

vol 
∇× � ·

B = A:Then, noting that � ∇× �

′ − © A × d �
vol 

� · Mdv W = � Md�s + B d �
m 

The first of these integrals (closed surface) vanishes if it is taken over a surface just outside the 
magnet, where �M is zero. Thus the magnetic co-energy in a system with only a permanent magnet 
source is 

� 
W = B d �′ � Mdv m 

vol 
·

Adding current carrying coils to such a system is done in the obvious way. 
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