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Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.685 Electric Machines 

Problem Set 4 Solutions October 10, 2005 

Problem 1: The problem statement should have led you through this, so we leave some of the 
statement here: 

1. To start, note that this machine will have a stability limit for operation at low field 
excitation (corresponding to high absorbed reactive power). For a round rotor machine 
this limit is reached at a torque angle of 90◦ , but this machine has saliency so you 
must determine the value of angle for which stability is reached. Compute and plot 
the angle and corresponding value of field current at the stability threshold for this 
machine, against real power. The stability limit is reached when the derivative of torque 
with respect to angle is zero. Since torque is proportional to real power, you can use the 
derivative of power with angle. 

Real power output for a generator is: 

3 1 1 
P = 3 

V Eaf 
sin δ + V 2 − sin 2δ 

Xd 2 Xq Xd 

The derivative of power with angle is then simply: 

dP V Eaf 1 1 
= 3 cos δ + 3V 2 − cos 2δ 

dδ Xd Xq Xd 

At the stability limit, dP = 0, and this may be solved for internal voltage: 
dδ 

Xd cos 2δ 
Eaf = −V − 1 

Xq cos δ 

Using this shorthand: 
1 1 

P0 = 3V 2 − 
Xq Xd 

we have this nonlinear expression to solve: 

P 1 
cos δ − sin 2δ + cos 2δ sin δ = 0 

P0 2 

Now, this looks awful but in fact is quite easily solved by most mathematical assistants. 
MATLAB, for example, has a routine called ’fmins’ which makes quick work of it. Once 
δ is found, Eaf may be determined and the operating point is easily determined. The 
values for angle δ and field current If = Eaf/Xm are plotted in Figure 1 
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Figure 1: Angle and Field Current at Stability Limit 

2. Since the capability curve is to be plotted as reactive power (Q) vs real power (P ), you 
must determine the value of Q at the stability limit. Actually, the underexcited reactive 
power limit may be either statility or armature (current) capacity. So determine the 
underexcited limit Q as a function of real power P . 

We use, of course: 

3 1 1 3 1 1 
Q = 3 

V Eaf 
cos δ + V 2 − cos 2δ − V 2 + 

Xd 2 Xq Xd 2 Xq Xd 

Now, if it possible that this stability limited value of Q is outside the armature capacity. 
That is easily checked: 

|Q| = V A2 − P 2 

3. There is also a limit for over-excited operation. That limit might be field current and 
it might be armature current. To establish the field current limit, assume that this 
machine can reach the armature current limit for power factor of 0.8 and above, but 
for power factors below that the machine is field current limited. Find the torque angle 
and corresponding field current limits for over-excited operation at the defining power 
factor. 
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It is straightforward to calculate the angle δ at the specified value of power factor: using 
the power factor angle: 

XqI cos ψ 
δ = atan 

V + XqI sin ψ


where I is the armature limited stator current:


V A

I = 

3V 

4. For torque angles less than this power-factor determined condition, real and reactive 
power are simply determined by torque angle and internal voltage Eaf which is fixed at 
its limit. These are a simple plug-in to the existing formulae. 

5. For values of real power greater than this power factor determined situation real and 
reactive power are on the armature current (heating) limit and so are easy to compute. 

6. These were all added together (see attached script) and the result is the rather odd 
looking Figure 2 

Problem 2: Figure 3 shows, in very schematic form, the situation. Pictured is only the air-gap, not 
for clairity but to simplify what has to be drawn. Each slot has two coil halves, each carrying 
10,000 Ampere-Turns. The slots are 90 physical degrees or 180 electrical degrees apart.Flux 
density across the air-gap must then be as shown in Figure 4, where the amplitude is: 

NI 20000A-T 
Ba = µ0 = 1.2566 × 10−6 × ≈ .2512T 

2g 2 × .05 

The Fourier Series for this is:


� 4 µ0NI

Br = sin npθ 

nπ 2pg 
n odd 

It is straightforward to compute this Fourier Series (see the attached script), and the resulting 
picture is plotted in Figure 5. In this figure we have plotted the sum of Fourier harmonics up 
to ninth. The ’exact’ solution is also plotted as a dotted line. 

Now, were we to put these coils in adjacent slots as is shown in Figure 6, the slot spacing is 
γ = 2π = 30◦ . The step in flux density is the same as in the single coil case (across each of the 

12 

two coils). The peak flux density is twice that of the previous case, as is shown in Figure 7 

If we short-pitch this winding by one slot, we wind up putting NI ampere-turns in the outer 
of three slots and 2NI in the inner (central) slot, as shown in Figure 8. The flux density from 
this arrangement has the same peak value but the steps are different, as shown in Figure 9 

Now, it is possible to use the method of pitch and breadth factors to reproduce these flux 
density patterns. See that, for a short-pitched winding with pitch angle α, the pitch factor is 
defined by: 

2 
� π 

2 
+

α 

2 4 π α 
kp = sin nθdθ = sin n sin n 

π π 

2 
− 

α 

2 
nπ 2 2 
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Figure 2: Capability Chart of Problem 1 

and the breadth factor is, from the notes: 

γ 
2 
γ 
2 

sin mn 
kb = � 

m sin n 

= π 
6 

=For the full-pitch case, use γ 30◦, and the pitch factor is unity. For the short-pitch 
case, α = π − π 

6 
= 150◦ . The two cases are computed and plotted in Figure 10 

Finally, to find winding inductance we use the expression for the space fundamental part of 
inductance: 

2 
wRLk

2 π p2g 
3 4 µ0N

2 
aL1 = 

Here the number of turns is Na = 2pmN = 8.This assumes each of the four poles is surrounded 
by two turns. 
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Figure 3: Full-Pitch Coil Cartoon
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Figure 4: Full-Pitch Coil Flux Density 

In the problem statement I neglected to say for which winding to compute inductance. The 
only difference is the winding factor, which for the full-pitched winding is about .9659, while 
for the short pitched winding it is about .9330. Working out the inductance (actually the 
script does this), we find L1 to be about 2.15 mHy for the full-pitch case and about 2.01 mHy 
for the short pitch case. 
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Problem 2, part 1 
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Figure 5: Full-Pitch Coil Flux Density 

o
15 

NI 

NI 

Figure 6: m=2, Full-Pitch Coil Arrangement 
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Figure 7: Flux Density from m=2, Full Pitch 

Figure 8: m=2, Short-Pitch Coil Arrangement 

Figure 9: Flux Density from m=2, Short Pitch 
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Problem 2, part 2 
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Figure 10: Full-Pitch Coil Flux Density 
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Xq+1/Xd);

% 6.685 Problem Set 4, Problem 1

% First, line up parameters

VA=250e6; % Machine Rating 

V = 24000/sqrt(3); % Phase voltage, RMS 

om = 2*pi*60; % frequency 

Xd = .012*om; % direct axis reactance 

Xq = .0098*om; % quadrature axis reactance 

Xm = .052*om; % mutual reactance 

pfr = 0.8; % can operate to this level of over-excited power factor 

% We are going to trace out the capability chart for this machine

% First, get over-excited limit

psi = acos(pfr); % limiting power factor angle

Ial = VA/(3*V); % armature current limit

dl = atan(Xq*Ial*cos(psi)/(V+Xq*Ial*sin(psi)));

E_1 = sqrt((V+Xq*Ial*sin(psi))^2+(Xq*Ial*cos(psi))^2);

I_d = Ial*sin(dl+psi);

Eafl = E_1 + I_d*(Xd-Xq);


delt_1 = 0:.01:1 .* dl; % range of angles

P_1 = (3*V*Eafl/Xd) .* sin(delt_1) + 1.5*V^2*(1/Xq-1/Xd) .* sin(2 .* delt_1);

Q_1 = (3*V*Eafl/Xd) .* cos(delt_1) + 1.5*V^2*(1/Xq-1/Xd) .* cos(2 .* delt_1) - 1.5*V^2*(1/


P_2 = (pfr:.01:1) .* VA; % rest of over-excited range

Q_2 = sqrt(VA^2 - P_2 .^2);


% Now for under-excited: Find Stability Limit

% This will be angle delta as a function of real power P

warning off MATLAB:fzero:UndeterminedSyntax % to suppress a whole lot of wierd warnings

P_0 = 3*V^2*(1/Xq-1/Xd); % convenient shorthand

P_3 = (1:-.01:.01) .* VA; % establish a range (note we are going down!)

P_3c = zeros(size(P_3)); % gonna check ourselves here

Q_3 = zeros(size(P_3)); % space for Q

E_af = zeros(size(P_3));

ds = zeros(size(P_3));


for i = 1:length(P_3)

Pr = P_3(i)/P_0; % here is how we use the notation

d = fzero(’ef’, [0 pi/2], [], Pr); % this gives angle at stability limit

Eaf = -V*(Xd/Xq-1)*cos(2*d)/cos(d); % and corresponding internal voltage

E_af(i) = Eaf;

ds(i) = d;

P_3c(i) = 3*V*Eaf*sin(d)/Xd + 1.5*V^2*(1/Xq-1/Xd)*sin(2*d);

% need to check on stability limited or curent limited Q

Qs = (3*V*Eaf/Xd) * cos(d) + 1.5*V^2*(1/Xq-1/Xd) * cos(2*d) - 1.5*V^2*(1/Xq+1/Xd);
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Qc = sqrt(VA^2-P_3(i)^2);

Q_3(i) = max(Qs, -Qc);


end

dpdd = (3*V/Xd) .* E_af .* cos(ds) +3*V^2*(1/Xq-1/Xd) .* cos(2 .* ds);


% We can now tote these things up

P = [P_1 P_2 P_3];

Q = [Q_1 Q_2 Q_3];


figure(1)

plot(P, Q, P_3c, Q_3) % should get only one curve

title(’Generator Capability (Problem 4.1)’)

ylabel(’Generator Reactive Power’)

xlabel(’Generator Real Power’)

axis([0 5e8 -2.5e8 2.5e8])

axis square

grid on


figure(2)

subplot 211

plot(P_3, E_af)

title(’Stability Limit for Underexcited Operation’)

ylabel(’Eaf’)

subplot 212

plot(P_3, ds)

ylabel(’Angle’)

xlabel(’Underexcited Power’)
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% 6.685 Problem Set 4, Problem 2

% Field from a simple winding

% Parameters:

muzero=pi*4e-7;

L = 3;

R = 1;

g = .05;

p=2;

N = 1;

I = 10000;


% Here is the basic field amplitude: Two half turns in a slot

Ba = 2*muzero*N*I/(2*g);


% now generate a Fourier Series:

n = 1:2:13;

th = 0:pi/100:4*pi;

Bh = (4*Ba/pi) ./ n;

B = zeros(size(th));

angle = (90/pi) .* th;


for i = 1:length(n)

B = B + Bh(i) .* sin(n(i) .* th);


end


% and here is the ’exact’ solution:

Be = [Ba Ba -Ba -Ba Ba Ba -Ba -Ba];

Ae = [0 90 90 180 180 270 270 360];

figure(1)

plot(angle, B, Ae, Be, ’--’)

title(’Problem 2, part 1’)

ylabel(’B_r, T’)

xlabel(’Angle, deg’)


% Now the multiple slot sollution

m = 2;

gamma = pi/6;

alfa = pi-gamma; % short pitched by one slot...


kp = sin(n .* pi/2) .* sin(n .* alfa/2);

kb = sin((m*gamma/2) .* n) ./ (m .* sin((gamma/2) .* n));


% First, full pitched, then shorted by one slot

kw = kp .* kb;

Bh = 2*(4*Ba/pi) .* kb ./ n;
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2*Ba

Bs = 2*(4*Ba/pi) .* kw ./ n;

B_f = zeros(size(th));

B_s = zeros(size(th));


for i = 1:length(n)

B_f = B_f + Bh(i) .* sin(n(i) .* th);

B_s = B_s + Bs(i) .* sin(n(i) .* th);


end


% and the ’exact’ solutions

Bfe = [0 0 2*Ba 2*Ba 0 0 -2*Ba -2*Ba 0 0 2*Ba 2*Ba 0 0 -2*Ba -2*Ba 0 0];

Afe = [0 7.5 7.5 82.5 82.5 97.5 97.5 172.5 172.5 187.7 187.5 262.5 262.5 277.5 277.5 352.

Bse = [Ba Ba 2*Ba 2*Ba Ba Ba -Ba -Ba -2*Ba -2*Ba -Ba -Ba Ba Ba 2*Ba 2*Ba Ba Ba -Ba -Ba -

Ase = [0 15 15 75 75 90 90 105 105 165 165 180 180 195 195 255 255

figure(2)

subplot 211

plot(angle, B_f, Afe, Bfe, ’--’)

title(’Problem 2, part 2’)

ylabel(’Full Pitched, T’)

subplot 212

plot(angle, B_s, Ase, Bse, ’--’)

ylabel(’Short Pitched, T’)

xlabel(’Angle, deg’)


Na = m*p*N;


L_1 = (3/2)*(4/pi)*(muzero*Na^2*kw(1)^2*R*L)/(p^2*g)
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