
Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.685 Electric Machines 

Problem Set 2 Solutions September 17, 2005 

Problem 1: First, note that λ1 = L1i1 + Mi2 cos ωt, so that 

di1 di2 
v1 = L1 + M cos ωt − ωMi2 sin ωt 

dt dt 

Also, we already know that 
T e = −Mi1i2 sin θ 

So, for constant i2 == I2, 

T e = −MI1I2 sin ωt 

V1 = −ωMI2 sin ωt 

Problem 1, Constant Secondary Current 
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Figure 1: Part 1: Constant Current in Both Coils 

Now, if λ2 = 0, 
M 

i2 = − I1 cos ωt 
L2 

1 



� � 

and 
di2 

= ω 
MI1 

sin ωt 
dt L2 

Torque becomes: 

T e = 
M2 

L2 

I2 

1 sin ωt cos ωt = 
M2 

2L2 

I2 

1 sin 2ωt 

and voltage is 

M2I1 M2I1 M2I1 
v1 = ω cos ωt sin ωt + ω sin ωt cos ωt = ω sin 2ωt 

L2 L2 L2 

Problem 1, Zero Secondary Flux 
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Figure 2: Part 2: Zero Flux in Coil 2 

Note that there is no average of voltage or torque and so no real power for these two parts. 
This makes sense as there is no place for dissipation.


In the third part we do have dissipation. It is convenient, since this is a sinusoidal steady

state problem, to use complex variables. Voltage on the secondary side can be written:


V 2e
jωt v2 = Re 

The complex amplitude of v2 is found by writing KVL: 

V 2 = jωMI1 + jωL2I2 = −RI2 

So the complex amplitude of current in the secondary is: 
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−jωMI1
I2 = 

jωL2 + R 

The magnitude and angle of the secondary current are easily written: 

ωMI1
|I2| = � 

(ωL2)2 + R2 

� I2 = − 
π 

2 
− arctan 

ωL2 

R 
π 

= −θ = − − φ 
2 

Torque is then calculated: 

T e = −Mi1i2 sin ωt 

= −MI1|I2| sin ωt cos(ωt − θ) 

1 1 
= −MI1|I2| sin θ + sin(2ωt − θ)

2 2 

Voltage is, using the chain rule for differentiation: 

dλ1 
v1 = 

dt 
di2 

= −ωMi2 sin ωt + M cos ωt 
dt 

= −ωM |I2| sin ωt cos(ωt − θ)− ωM |I2 cos ωt sin(ωt − θ) 

= ωM |I2| sin(2ωt − θ) 

These are plotted in Figure 3 

As a check, we might consider the average power input to the machine and the average power

dissipated in the resistor, as these must be equal.


Power into the machine through the shaft is easily estimated as speed times torque:


1 1 
Pm = −ωT e = ωMI1|I2| sin θ + sin(2ωt − θ)

2 2 

Power dissipated in the resistor is 

Pe = i2R2

These are plotted in Figure 4. They appear to have the same average value, but we can prove 
it easily. See that average electrical power is, substituting for the magnitude of i2: 

1 
Pe = |I2|

2R =
1 ω2M2I1

2 

R 
2 2 (ωL2)2 + R2 

Average mechanical power in is: 
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Problem 1, Secondary shorted through resistor 
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Figure 3: Part 3: Coil 2 shorted through a resistor 

ω2M2 

Pm = −ωT e = � sin θ 
(ωL2)2 + R2 

ωL2Noting that θ = π + arctan 
R 

, we see that 
2 

ωL2 R 
sin θ = cos arctan = � 

R (ωL2)2 + R2 

And making the substitution for sin θ into the expression for Pm we have proven that Pe = Pm. 

Problem 2: Area A = wD is .05 square meter, so force per unit area is 

F 50000N B2 

P = = = 106Pa = 
A .05m2 2µ0


So that required flux density is


B = 2µ0P = 1.5853T 

BMagentic field is H = 
µ0 

= 1.2626 × 106A/m, And then required ampere-turns are 

NI = 2gH = 2.5321 × 104 

Note that this implies a current density in the coil of 252 amperes per square centimeter: a 
value that would imply the need for good cooling. 
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Problem 1, Electrical and Mechanical Power 
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Figure 4: Power in and out for Part 3 

Now, if the car is off center, we need to be a step more sophisticated in modeling. Note that 
the permeances of the two gaps will be: 

µ0D w µ0D w 
P1 = + x P2 = − x 

g 2 g 2 

Total permeance is just that of the two gaps in series: 

µ0D w
P = 

P1P2 
= 

2 

− x 2 

P1 + P2 gw 4 

Inductance is then simply: 
2µ0N

2D w
L = − x 2 

wg 4 

Vertical force is, since this is a linear, singly excited system: 

2 

Fy = 
I2 ∂L 

= −
µ0(NI)2D w

− x 2 

2 ∂g 2g2 4 

Thus required exciting ampere-turns are: 

2 
(NI)2 = 

wg2F0 

µ0D 2 
2w − x

4 

where F0 is the required vertical force. This is plotted in Figure 5. 
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Figure 5: Ampere-Turns required to produce lift force 

Lateral force is 
I2 ∂L µ0 (NI)2 D 

Fx = = −2 x 
2 ∂x wg 

When we substitute for the frquired ampere-turns to produce the required vertical force, and 
doing a little algebra, we find: 

4xg 
Fx = −F0 2 

2w − x
4 

This is plotted in Figure 6 for both constant current and for current that must be maintained 
to produce the correct lift. 
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Figure 6: Lateral Force: Constant Current and corrected for current variation 
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Matlab Script for Problem 1 

% 6.685 Problem Set 2, Problem 1

% Parameters

L1 = .1;

L2 = .1;

M = .08;

I1 = 5;

R = 20;

om = 2*pi*60;

t =-1/60:1/6000:1/60;


% Part 1: Constant Current

I2 = 5;

T_e1 = -M*I1*I2 .* sin(om .* t);

V11 = -om*M*I2 .* sin(om .* t);


figure(1)

subplot 211

plot(t, T_e1)

title(’Problem 1, Constant Secondary Current’)

ylabel(’Torque, Nm’)

subplot 212

plot(t, V11);

ylabel(’Terminal 1 Voltage’)

xlabel(’Time, s’)


% Part 2: Rotor shorted


T_e2 = (M^2/(2*L2))*I1^2 .* sin(2*om .*t);

V12 = (om*M^2*I1/L2) .* sin(2*om .*t);


figure(2)

subplot 211

plot(t, T_e2)

title(’Problem 1, Zero Secondary Flux’)

ylabel(’Torque, Nm’)

subplot 212

plot(t, V12);

ylabel(’Terminal 1 Voltage’)

xlabel(’Time, s’)


% Part 3: Rotor shorted through a resistor


I2m = om*M*I1/sqrt((om*L2)^2+R^2);

phi = atan(om*L2/R);

theta = pi/2 + phi;
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T_e3 = -(M*I1*I2m/2) .* (sin(theta) + sin(2*om .* t - theta));

V13 = -om*M*I2m .* sin(2*om .* t - theta);


figure(3)

subplot 211

plot(t, T_e3)

title(’Problem 1, Secondary shorted through resistor’)

ylabel(’Torque, Nm’)

subplot 212

plot(t, V13);

ylabel(’Terminal 1 Voltage’)

xlabel(’Time, s’)


% part 4: Power for Part 3


I_2 = I2m .* cos(om .* t - theta);

P2 = R .* I_2 .^2;

Pm = -om .* T_e3;

Pmav = om*M*I1*I2m*sin(theta)/2;

Peav = R * I2m^2/2;

Pma = Pmav .* ones(size(t));

Pea = Peav .* ones(size(t));


figure(4)

subplot 211

plot(t, P2, t, Pea, ’--’)

title(’Problem 1, Electrical and Mechanical Power’)

ylabel(’Dissipated in Resistor’)

subplot 212

plot(t, Pm, t, Pma, ’--’);

ylabel(’Mech Power In’)

xlabel(’Time, s’)


figure(5)

plot(t, P2,’--’, t, Pm)

title(’Problem 1, Electrical and Mechanical Power’)

ylabel(’Mech Solid, El Dotted’)

xlabel(’Time, s’)
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Matlab Script for Problem 2 

% 6.685 Problem Set 2, Problem 2

% Parameters 

D = 0.5; % length 

F = 5e4; % required force 

muzero = pi*4e-7; 

g = .01; % relative motion gap 

w = .1; % pole width, coil width and depth 

% First, do the centered case

A = w*D; % area

B = sqrt(2*muzero*F/A)

N_I = 2*g*B/muzero


x = -.25*w:.005*w:.25*w;


NIS = (2*w*g^2*F/(muzero*D)) ./ (w^2/4 - x .^2);

NI = sqrt(NIS);


figure(1)

plot(x, NI)

axis([-.025 .025 0 3e4])

title(’6.685 Problem 2.2’)

ylabel(’Ampere-Turns’)

xlabel(’Lateral Position’)


% now lateral force

% fixed current

F_xf = -(2*muzero*D*N_I^2/(w*g)) .* x;

% accounting for curent

F_xc = (-2*muzero*D/(w*g)) .* NIS .* x;

F_chk = -(F*4*g) .* x ./((w^2)/4 - x .^2);

figure(2)

plot(x, F_xf,’--’, x, F_xc, x, F_chk)

title(’6.685 Problem 2.2’)

ylabel(’Lateral Force’)

xlabel(’Lateral Position’)
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