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Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.685 Electric Machines 

Problem Set 1 Solutions September 10, 2005 

Problem 1: If we assume, as suggested in the problem statement, that fields outside the coil can 
be ignored, magnetic field inside the coil is simply 

Ni 
H = ~iz 

L 

and outside the coil magnetic field is zero. On the inner surface of the coil the normal vector 
is −~ir and 

Trr = −
µ0 

Hz 

2 

2


so that ’traction’ on the surface is pressure pushing out:


µ0 Ni 
�2 

Pr = 
2 L 

Hoop force per unit length is just pressure times radius: 

Fh µ0 Ni 
�2 

= RPr = R 
L 2 L 

To do this same problem using the principal of virtual work, see that co-energy is just co-
energy per unit volume times volume, or 

u0 Ni 
�2 

′ W = πR2Lm 2 L 

Hoop force is the first derivative of co-energy with respect to hoop circumference, which is 
C = 2πR: 

′ ′ ∂W 1 ∂W 1 ∂ µ0 Ni 
�2 

πR2L = 
µ0 Ni 

�2 
mFh = m = = RL 

∂C 2π ∂R 2π ∂R 2 L 2 L 

to get hoop force per unit length, divide by L and we get the same answer. 
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Figure 1: Current in coil for Problem 2 
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Problem 2: I have re-drawn the current waveform to show my notation for time intervals (Fig
ure 1). If we note Hz as magnetic field within the conductive cylinder, current in that cylinder 
must be: 

σts ∂ 
Kθ = − µ0πRi

2Hz = Ts 

∂Hz 

2πRi ∂t ∂t 

where ts and Ri are shell thickness and radius, respectively. The shell time constant is 

µ0σtsR 
Ts = 

2 

If Kθ is azimuthal current in the shell, field inside the shell is: 

Ni 
Hz = Kθ + 

L 

so that 
∂Hz Ni 

Ts + Hz = 
∂t L 

Ni Now we have to patch together a solution. Note that if we note Hz0 = 
L 

, the step response 
of our differential equation would be: 

t 
� 

Hz

s = Hz0 1 − e 
− 

Ts 

Since the ramp which is the current waveform during interval 1 is simply the integral of a 
step, and noting that the response of an ODE to the integral of a waveform is the integral of 
the response to the waveform itself, the response during the first interval is 

t 
� 

t 

Hz1 = 
Hz0 

1 − e 
− 

T

′ 

s dt = Hz0 
0 Tr 

t � 
t 
� 

− 
Ts 

1 − e 
− 

Ts 

Tr Tr 

At the end of this interval the field has risen to: 

H(1) 
Tr 

= Hz0 1 − 
Ts 

1 − e 
− 

Ts 
z Tr 

During the second time interval the excitation is constant and we have the equivalent of a 
step response with an initial condition: 

� � t2
−

Hz2 = Hz0 − Hz0 − Hz 

(1) e Ts 

where t2 is time from the start of interval 2. With a little bit of manipulation this is found 
to be: 

� � � � 
Tr t2

−
Hz2 = Hz0 1 − 

Ts 
1 − e 

− 
Ts e Ts 

Tr 

In the third time interval we have an excitation which is the same as the steady state minus 

the same ramp as started the problem: 

t3t3
Hz3 = Hz2 − Hz0 − 

Ts 
1 − e 

− 
Ts 

Tr Tr 

Writing that out and evaluating at the end of the third time interval, when excitation current 
reaches zero, 

� � �� �� 

H(3) 
Tr To+Tr 

= Hz0 
Ts 

1 − e 
− 

Ts 1 − e 
− 

Ts 
z Tr 
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and in the fourth time interval the system is homogeneous: 

Hz4 = H(3) − 
t4 

e Ts 
z 

It is relatively easy in MATLAB to build up the waveforms for Hz by simply concatenating 
the time periods. Shown in Figure 2 are the field inside of the cylinder and outside (which is 

Ni just 
L 

). 

6.685 Problem 1.2 Axial Field 
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Figure 2: Magnetic Fields 

Net pressure on the cylinder is, noting that the normal vector inside is just −~ir and outside 
is ~ir, 

Pr = 
µ0 

H2 
− 

Ni 
�2 

2 z L 

so that hoop force is 
FH 

= RPr
L 

This is shown in Figure 3. Note that it starts out negative as the field outside is greater than

the field inside.


To compute coil voltage we need:

dφ 

v = Ri + N 
dt 

Now, the resistive term Ri is straightforward. Flux consists of two parts: 

Ni 
Φ = µ0A1Hz + µ0A2 

L 
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6.685 Problem 1.2: Hoop force per unit length 

−4 

−3 

−2 

−1 

0 

1 

2 

3 

N
/m

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
Time, s 

Figure 3: Net Pressure 

where A1 = πR
i 
2 (Ri is the shell radius) and A2 = π(R2 

− R
i 
2) (Ro is the coil radius). o 

The rate of change of current is ± I0 or zero, depending on time interval and that can be 
Tr 

pieced together in MATLAB. Rate of change of field inside the cylinder is: 

dHz 1 Ni 
= − Hz

dt Ts L 

The result is shown in Figure 4


To get dissipation in the cylinder we can simply find the current in the cylinder:


Ni 
Kθ = − Hz

L 

and then 
K2 

Pd = 2πRiL θ 

σts 

Cylinder current is shown in Figure 5 and resulting dissipation in Figure 6 

Problem 3 We assume here that speed is very close to synchronous, so that: 

2π × 60 
Ω = 

p 

Required torque is simply: 
P 

T = 
Ω 

4 



Problem 1.2: Coil Voltages 
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Figure 4: Voltage Induced in the Coil 

We established in class that: 

T = 2πR2L = 2 × Vrotor × τ 

where R and L are rotor radius and length, and τ is peripheral shear stress. If length is twice 
diameter, 

Vrotor = 4πR3 

I have written a simple script that carries out these calculations (appended) and here is the 
result (I have removed a bunch of blank lines) 

Om = 376.9911 188.4956 125.6637

T = 1.0e+03 * 2.6526 5.3052 7.9577

Vol = 0.0133 0.0265 0.0398

D = 0.2036 0.2566 0.2937

L = 0.4073 0.5131 0.5874


5




6.685 Problem 1.2: Shell Current 

−4000 

−3000 

−2000 

−1000 

0 

1000 

2000 

3000 

4000 

A
/m

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
Time 

Figure 5: Azumuthal Current in Conductive Cylinder 

6.685 Problem 1.2: Dissipation 
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Figure 6: Dissipation in Cylinder 
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Matlab Code for Problem 2 

% Massachusetts Institute of Technology

% 6.685, Fall Term, 2005

% Problem set 1, Problem 2 Solution

% Parameters, etc. 

muzero = pi*4e-7; 

sig = 6e7; % conductivity of the cylinder 

ts = .001; % thickness of the cylinder 

Ri = .1; % radius of the cylinder 

Ro = .125; % radius of the coil 

L = 1; % axial extent of the system 

N = 1000; % turns 

I0 = 10; % peak current 

T_r = .01; % rise time 

T_o = .05; % steady current time 

T_f = .03; % end time (kinda arbitrary) 

dw = .002; % coil wire diameter 

% minor side calculations

R_c = N*2*pi*Ro/(sig*(pi/4)*dw^2); % coil resistance

T_s = muzero*sig*ts*Ri/2; % shell time constant


% now build the times

dt = T_r/20; % basic time step

t1 = 0:dt:T_r; % first interval

t2i = dt:dt:T_o; % constant current time

t2 = t2i + T_r; % so we can put things together

t3i = dt:dt:T_r; % downgoing ramp

t2e = t3i + T_o; % extension of interval 2

t3 = t3i + T_r + T_o; % for assembly purposes

t4i = dt:dt:T_f; % not sure how far to carry this...

t4 = t4i + 2*T_r + T_o;

t = [t1 t2 t3 t4]; % complete time line

T_e = 2*T_r+T_o+T_f;


% construct current waveform

i1 = (I0/T_r) .* t1; % first interval

i2 = I0 .* ones(size(t2i)); % constant current interval

i3 = I0 .* (1 - (1/T_r) .* t3i); % downward ramp

i4 = zeros(size(t4));

I = [i1 i2 i3 i4];

H_o = (N/L) .* I;


% now construct magnetic field

H1 = (N*I0/L) .* (t1 ./ T_r - (T_s/T_r) .* (1 - exp(-t1 ./ T_s)));

H2 = (N*I0/L) .* (1 - (T_s/T_r)*(1-exp(-T_r/T_s)) .* exp(-t2i ./ T_s));

H3 = (N*I0/L) .* (1 - (T_s/T_r)*(1-exp(-T_r/T_s)) .* exp(-t2e ./ T_s))...
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);

- (N*I0/L) .* (t3i ./ T_r - (T_s/T_r) .* (1 - exp(-t3i ./ T_s)));

H4 = (N*I0/L) .* (T_s/T_r) * (1 - exp(-T_r/T_s)) * (1 - exp(-(T_o+T_r)/T_s)) .* exp(-t4i ./ T_s

H = [H1 H2 H3 H4];

figure(1)

subplot 211

plot(t, H_o)

title(’6.685 Problem 1.2 Axial Field’)

ylabel(’Outside Shell, A/m’)

subplot 212

plot(t, H)

ylabel(’Inside Shell, A/m’)

xlabel(’Time, s’)


% hoop force is easily computed from the fields:

% this is force per unit length

F_h = (Ri*muzero/2) .* (H .^2 - H_o .^2);

figure(2)

plot(t,F_h)

title(’6.685 Problem 1.2: Hoop force per unit length’)

ylabel(’N/m’)

xlabel(’Time, s’)


% Now to compute voltage

dhz0dt = (N*I0/(L*T_r)) .* [ones(size(t1)) zeros(size(t2)) -ones(size(t3)) zeros(size(t4))];

dhzdt = (1/T_s) .* (H_o - H);

A1 = pi*Ri^2;

A2 = pi*(Ro^2 - Ri^2);

v_i = muzero*N .* (A1 .* dhzdt + A2 .* dhz0dt);

v_r = R_c .* I;

v = v_r + v_i;


figure(3)

subplot 311

plot(t, v_i)

axis([0 T_e -100 100])

title(’Problem 1.2: Coil Voltages’)

ylabel(’Inductive’)

subplot 312

plot(t, v_r)

axis([0 T_e -100 100])

ylabel(’Resistive’)

subplot 313

plot(t, v)

axis([0 T_e -100 100])

ylabel(’Volts’)

xlabel(’Time, s’)


% and, finally current in the shell and then loss
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Kth = H_o - H; % this is current in the shell

P_d = (2*pi*Ri/(sig*ts)) .* Kth .^ 2; % dissipation


figure(4)

plot(t, Kth)

title(’6.685 Problem 1.2: Shell Current’)

ylabel(’A/m’)

xlabel(’Time’)


figure(5)

plot(t, P_d)

title(’6.685 Problem 1.2: Dissipation’)

ylabel(’Watts’)

xlabel(’Time’)


Matlab Code for Problem 3 

% 6.685 Problem Set 1, Problem 3

p = [1 2 3];

Om = 2*pi*60 ./ p

T = 1e6 ./ Om

Vol = T ./ 2e5

R = (Vol ./ (4*pi)) .^ (1/3);

D = 2 .* R

L = 2 .* D
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